cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080764 First differences of A049472, floor(n/sqrt(2)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0
Offset: 0

Views

Author

Matthew Vandermast, Mar 25 2003

Keywords

Comments

Fixed point of the morphism 0->1, 1->110. - Benoit Cloitre, May 31 2004
As binary constant 0.1101101110110... = 0.85826765646... (A119812), see Fxtbook link. - Joerg Arndt, May 15 2011
Characteristic word with slope 1/sqrt(2) [see J. L. Ramirez et al.]. - R. J. Mathar, Jul 09 2013
From Peter Bala, Nov 22 2013: (Start)
Sturmian word: equals the limit word S(infinity) where S(0) = 0, S(1) = 1 and for n >= 1, S(n+1) = S(n)S(n)S(n-1).
More generally, for k = 0,1,2,..., we can define a sequence of words S_k(n) by S_k(0) = 0, S_k(1) = 0...01 (k 0's) and for n >= 1, S_k(n+1) = S_k(n)S_k(n)S_k(n-1). Then the limit word S_k(infinity) is a Sturmian word whose terms are given by a(n) = floor((n + 2)/(k + sqrt(2))) - floor((n + 1)/(k + sqrt(2))).
This sequence corresponds to the case k = 0. See A159684 (case k = 1) and A171588 (case k = 2). Compare with the Fibonacci words A005614, A221150, A221151 and A221152. See also A230901. (End)
For n > 0: a(A001951(n)) = 1, a(A001952(n)) = 0. - Reinhard Zumkeller, Jul 03 2015
Binary complement of the Pell word A171588. - Michel Dekking, Feb 22 2018

Examples

			From _Peter Bala_, Nov 22 2013: (Start)
The first few Sturmian words S(n) are
S(0) = 0
S(1) = 1
S(2) = 110
S(3) = 110 110 1
S(4) = 1101101 1101101 110
S(5) = 11011011101101110 11011011101101110 1101101
The lengths of the words are [1, 1, 3, 7, 17, 41, ...] = A001333.  (End)
		

Crossrefs

Programs

  • Haskell
    a080764 n = a080764_list !! n
    a080764_list = tail $ zipWith (-) (tail a049472_list) a049472_list
    -- Reinhard Zumkeller, Jul 03 2015
    
  • Maple
    A080764 := proc(n)
        alpha := 1/sqrt(2) ;
        floor((n+2)*alpha)-floor((n+1)*alpha) ;
    end proc: # R. J. Mathar, Jul 09 2013
  • Mathematica
    Nest[ Flatten[ # /. {0 -> 1, 1 -> {1, 1, 0}}] &, {1}, 7] (* Robert G. Wilson v, Apr 16 2005 *)
    NestList[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0, 1}}] &, {1}, 5] // Flatten (* or *)
    t = Table[Floor[n/Sqrt[2]], {n, 111}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, Nov 03 2005 *)
    a[ n_] := With[{m = n + 1}, Floor[(m + 1) / Sqrt[2]] - Floor[m / Sqrt[2]]]; (* Michael Somos, Aug 19 2018 *)
  • PARI
    {a(n) = n++; my(k = sqrtint(n*n\2)); n*(n+2) > 2*k*(k+2)}; /* Michael Somos, Aug 19 2018 */
    
  • Python
    from math import isqrt
    def A080764(n): return (isqrt((m:=(n+2)**2)<<1)>>1)-(isqrt(m-(n<<1)-3<<1)>>1) # Chai Wah Wu, May 19 2025

Formula

a(n) = floor((n+2)*sqrt(2)/2) - floor((n+1)*sqrt(2)/2).
a(n) = A188295(n+2) for all n in Z. - Michael Somos, Aug 19 2018