cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080871 a(n)*a(n+3) - a(n+1)*a(n+2) = 3, given a(0)=a(1)=1, a(2)=4.

Original entry on oeis.org

1, 1, 4, 7, 31, 55, 244, 433, 1921, 3409, 15124, 26839, 119071, 211303, 937444, 1663585, 7380481, 13097377, 58106404, 103115431, 457470751, 811826071, 3601659604, 6391493137, 28355806081, 50320119025, 223244789044
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==a[1]==1,a[2]==4,a[n]==(3+a[n+1]a[n+2])/a[n+3]},a,{n,30}] (* Harvey P. Dale, Jun 08 2017 *)

Formula

a(n) = (3 + a(n-1)*a(n-2))/a(n-3) for n>2.
G.f.: (-x^3 - 4*x^2 + x + 1)/(x^4 - 8*x^2 + 1)
a(n+4) = 8*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]
a(n) = (0.25 + sqrt(10)/20)*(sqrt(4 + sqrt(15)))^n + (0.25 + sqrt(10)/20)*(sqrt(4 - sqrt(15)))^n + ( - 1/20*10^(1/2) + 1/4)*( - sqrt(4 + sqrt(15)))^n + ( - 1/20*10^(1/2) + 1/4)*( - (sqrt(4 - sqrt(15))))^n. [Richard Choulet, Dec 06 2008]

A080872 a(n)*a(n+3) - a(n+1)*a(n+2) = 4, given a(0)=a(1)=1, a(2)=5.

Original entry on oeis.org

1, 1, 5, 9, 49, 89, 485, 881, 4801, 8721, 47525, 86329, 470449, 854569, 4656965, 8459361, 46099201, 83739041, 456335045, 828931049, 4517251249, 8205571449, 44716177445, 81226783441, 442644523201, 804062262961, 4381729054565, 7959395846169, 43374646022449, 78789896198729, 429364731169925
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Bisections are A001079 and A072256.

Programs

  • Mathematica
    CoefficientList[Series[(-x^3-5 x^2+x+1)/(x^4-10 x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,5,9},30] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    Vec( (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1) + O(x^66) ) \\ Joerg Arndt, Jan 29 2016

Formula

G.f.: (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1).
a(n) = (3+sqrt(3))/12*(sqrt(3)-sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)+sqrt(2))^n+(3+sqrt(3))/12*(sqrt(3)+sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)-sqrt(2))^n. [Richard Choulet, Dec 03 2008]
a(n+4) = 10*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]

A080874 a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 8, 29, 79, 287, 782, 2841, 7741, 28123, 76628, 278389, 758539, 2755767, 7508762, 27279281, 74329081, 270037043, 735782048, 2673091149, 7283491399, 26460874447, 72099131942, 261935653321, 713707828021, 2592895658763
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,10,0,-1},{1,1,3,8},30] (* Harvey P. Dale, Sep 18 2016 *)

Formula

G.f.: (1+x-7x^2-2x^3)/(1-10x^2+x^4). a(n)=10a(n-2)-a(n-4). - Michael Somos, Mar 04 2003.
a(n) = ( - 1/24*3^(1/2)*2^(1/2) + 1/4 - 1/16*2^(1/2) + 1/8*3^(1/2))*(sqrt(3) + sqrt(2))^n + (1/24*3^(1/2)*2^(1/2) + 1/4 + 1/16*2^(1/2) + 1/8*3^(1/2))*(sqrt(3) - sqrt(2))^n + ( - 1/24*3^(1/2)*2^(1/2) - 1/8*3^(1/2) + 1/16*2^(1/2) + 1/4)*( - sqrt(3) - sqrt(2))^n + ( - 1/16*2^(1/2) + 1/4 + 1/24*3^(1/2)*2^(1/2) - 1/8*3^(1/2))*( - sqrt(3) + sqrt(2))^n [From Richard Choulet, Dec 04 2008]

A080875 a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=6.

Original entry on oeis.org

1, 1, 6, 11, 71, 131, 846, 1561, 10081, 18601, 120126, 221651, 1431431, 2641211, 17057046, 31472881, 203253121, 375033361, 2421980406, 4468927451, 28860511751, 53252096051, 343904160606, 634556225161, 4097989415521
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Bisections are A023038 and A077417.

Programs

  • Mathematica
    LinearRecurrence[{0,12,0,-1},{1,1,6,11},30] (* Harvey P. Dale, Jul 14 2024 *)

Formula

G.f.: (-x^3 - 6*x^2 + x + 1)/(x^4 - 12*x^2 + 1).
a(n+4) = 12*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]
a(n) = (1/4 + ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*(sqrt(6 + sqrt(35)))^n + (1/4 + ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*(sqrt(6 - sqrt(35)))^n + (1/4 - ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*( - sqrt(6 + sqrt(35)))^n + (1/4 - ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*( - (sqrt(6 - sqrt(35))))^n. [Richard Choulet, Dec 06 2008]
Showing 1-4 of 4 results.