A080871
a(n)*a(n+3) - a(n+1)*a(n+2) = 3, given a(0)=a(1)=1, a(2)=4.
Original entry on oeis.org
1, 1, 4, 7, 31, 55, 244, 433, 1921, 3409, 15124, 26839, 119071, 211303, 937444, 1663585, 7380481, 13097377, 58106404, 103115431, 457470751, 811826071, 3601659604, 6391493137, 28355806081, 50320119025, 223244789044
Offset: 0
-
RecurrenceTable[{a[0]==a[1]==1,a[2]==4,a[n]==(3+a[n+1]a[n+2])/a[n+3]},a,{n,30}] (* Harvey P. Dale, Jun 08 2017 *)
A080873
a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=2.
Original entry on oeis.org
1, 1, 2, 7, 19, 69, 188, 683, 1861, 6761, 18422, 66927, 182359, 662509, 1805168, 6558163, 17869321, 64919121, 176888042, 642633047, 1751011099, 6361411349, 17333222948, 62971480443, 171581218381, 623353393081, 1698478960862
Offset: 0
-
CoefficientList[Series[(-3x^3-8x^2+x+1)/(x^4-10x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,2,7},30] (* Harvey P. Dale, Feb 27 2023 *)
A080874
a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=3.
Original entry on oeis.org
1, 1, 3, 8, 29, 79, 287, 782, 2841, 7741, 28123, 76628, 278389, 758539, 2755767, 7508762, 27279281, 74329081, 270037043, 735782048, 2673091149, 7283491399, 26460874447, 72099131942, 261935653321, 713707828021, 2592895658763
Offset: 0
-
LinearRecurrence[{0,10,0,-1},{1,1,3,8},30] (* Harvey P. Dale, Sep 18 2016 *)
A080875
a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=6.
Original entry on oeis.org
1, 1, 6, 11, 71, 131, 846, 1561, 10081, 18601, 120126, 221651, 1431431, 2641211, 17057046, 31472881, 203253121, 375033361, 2421980406, 4468927451, 28860511751, 53252096051, 343904160606, 634556225161, 4097989415521
Offset: 0
-
LinearRecurrence[{0,12,0,-1},{1,1,6,11},30] (* Harvey P. Dale, Jul 14 2024 *)
A233450
Numbers n such that 3*T(n)+1 is a square, where T = A000217.
Original entry on oeis.org
0, 1, 6, 15, 64, 153, 638, 1519, 6320, 15041, 62566, 148895, 619344, 1473913, 6130878, 14590239, 60689440, 144428481, 600763526, 1429694575, 5946945824, 14152517273, 58868694718, 140095478159, 582740001360, 1386802264321, 5768531318886, 13727927165055
Offset: 1
153 is in the sequence because 3*153*154/2+1 = 188^2.
-
LinearRecurrence[{1, 10, -10, -1, 1}, {0, 1, 6, 15, 64}, 30]
Showing 1-5 of 5 results.
Comments