A080879
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=6.
Original entry on oeis.org
1, 1, 6, 7, 44, 52, 328, 388, 2448, 2896, 18272, 21616, 136384, 161344, 1017984, 1204288, 7598336, 8988928, 56714752, 67094272, 423324672, 500798464, 3159738368, 3738010624, 23584608256, 27900891136, 176037912576, 208255086592, 1313964867584, 1554437128192
Offset: 0
-
a:= n-> (<<0|1>, <-4|8>>^floor(n/2). <<1, 6+(n mod 2)>>)[1,1]:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 18 2023
-
LinearRecurrence[{0,8,0,-4},{1,1,6,7},30] (* Harvey P. Dale, Mar 10 2015 *)
A080881
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=2, a(2)=10.
Original entry on oeis.org
1, 2, 10, 21, 106, 223, 1126, 2369, 11962, 25167, 127078, 267361, 1350010, 2840303, 14341798, 30173889, 152359738, 320551567, 1618589926, 3405371681, 17195050234, 36176882223, 182671192870, 384324217729, 1940602920634
Offset: 0
-
CoefficientList[Series[(-x^3-x^2+2x+1)/(4x^4-11x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[ {0,11,0,-4},{1,2,10,21},30] (* Harvey P. Dale, Jun 10 2024 *)
A080882
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=3, a(2)=7.
Original entry on oeis.org
1, 3, 7, 22, 52, 164, 388, 1224, 2896, 9136, 21616, 68192, 161344, 508992, 1204288, 3799168, 8988928, 28357376, 67094272, 211662336, 500798464, 1579869184, 3738010624, 11792304128, 27900891136, 88018956288, 208255086592
Offset: 0
-
a:= n-> (Matrix([[22,7,3,1]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [0,8,0,-4][i] else 0 fi)^(n))[1,4]: seq(a(n), n=0..26); # Alois P. Heinz, Aug 23 2008
-
a[0]=1; a[1]=3; a[2]=7; a[3]=22; a[n_] := a[n] = 8*a[n-2] - 4*a[n-4]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jun 15 2015, after Richard Choulet *)
LinearRecurrence[{0,8,0,-4},{1,3,7,22},30] (* Harvey P. Dale, Mar 23 2025 *)
A080876
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0) = 1, a(1) = 1, and a(2) = 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 12, 28, 88, 208, 656, 1552, 4896, 11584, 36544, 86464, 272768, 645376, 2035968, 4817152, 15196672, 35955712, 113429504, 268377088, 846649344, 2003193856, 6319476736, 14952042496, 47169216512, 111603564544
Offset: 0
-
CoefficientList[Series[(-6x^3-7x^2+x+1)/(4x^4-8x^2+1),{x,0,40}],x] (* Harvey P. Dale, Mar 04 2011 *)
A080877
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=2.
Original entry on oeis.org
1, 1, 2, 3, 8, 14, 40, 72, 208, 376, 1088, 1968, 5696, 10304, 29824, 53952, 156160, 282496, 817664, 1479168, 4281344, 7745024, 22417408, 40553472, 117379072, 212340736, 614604800, 1111830528, 3218112512, 5821620224, 16850255872
Offset: 0
-
LinearRecurrence[{0,6,0,-4},{1,1,2,3},50] (* or *) CoefficientList[ Series[ (-3x^3-4x^2+x+1)/(4x^4-6x^2+1),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)
A080878
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=3.
Original entry on oeis.org
1, 1, 3, 4, 14, 20, 72, 104, 376, 544, 1968, 2848, 10304, 14912, 53952, 78080, 282496, 408832, 1479168, 2140672, 7745024, 11208704, 40553472, 58689536, 212340736, 307302400, 1111830528, 1609056256, 5821620224, 8425127936, 30482399232
Offset: 0
G.f. = 1 + x + 3*x^2 + 4*x^3 + 14*x^4 + 20*x^5 + 72*x^6 + 104*x^7 + 376*x^8 + ...
-
a[ n_] := If[ n < 0, 2^n, 1] SeriesCoefficient[ (1 + x - 3*x^2 - 2*x^3)/(1 - 6*x^2 + 4*x^4), {x, 0, Abs@n}]; (* Michael Somos, May 25 2014 *)
a[ n_] := 2^Quotient[ n - 1, 2] If[ OddQ@n, Fibonacci@n, LucasL@n]; (* Michael Somos, May 25 2014 *)
LinearRecurrence[{0,6,0,-4},{1,1,3,4},40] (* Harvey P. Dale, Dec 07 2014 *)
-
{a(n) = if( n<0, 2^n, 1) * polcoeff( (1 + x - 3*x^2 - 2*x^3) / (1 - 6*x^2 + 4*x^4) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, May 25 2014 */
-
{a(n) = 2^((n - 1)\2) * if( n%2, fibonacci(n), fibonacci(n-1) + fibonacci(n+1))}; /* Michael Somos, May 25 2014 */
Showing 1-6 of 6 results.