A118264
Coefficient of q^n in (1-q)^3/(1-3q); dimensions of the enveloping algebra of the derived free Lie algebra on 3 letters.
Original entry on oeis.org
1, 0, 3, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616
Offset: 0
The enveloping algebra of the derived free Lie algebra is characterized as the intersection of the kernels of all partial derivative operators in the space of non-commutative polynomials, a(0) = 1 since all constants are killed by derivatives, a(1) = 0 since no polys of degree 1 are killed, a(2) = 3 since all Lie brackets [x1,x2], [x1,x3], [x2, x3] are killed by all derivative operators.
- C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.
- Michael De Vlieger, Table of n, a(n) for n = 0..2097
- Nantel Bergeron, Christophe Reutenauer, Mercedes Rosas, and Mike Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math.CO/0502082, 2005. See also Canad. J. Math. 60 (2008), no. 2, 266-296.
- Joscha Diehl, Rosa Preiß, and Jeremy Reizenstein, Conjugation, loop and closure invariants of the iterated-integrals signature, arXiv:2412.19670 [math.RA], 2024. See pp. 17, 20.
- Index entries for linear recurrences with constant coefficients, signature (3).
-
f:=n->coeftayl((1-q)^3/(1-3*q),q=0,n):seq(f(i),i=0..15);
-
CoefficientList[Series[(1-q)^3/(1-3q),{q,0,30}],q] (* or *) Join[{1,0,3}, NestList[3#&,8,30]] (* Harvey P. Dale, Jun 28 2011 *)
Join[{1, 0, 3}, LinearRecurrence[{3}, {8}, 24]] (* Jean-François Alcover, Sep 23 2017 *)
A110168
Riordan array ((1-x^2)/(1+3x+x^2),x/(1+3x+x^2)).
Original entry on oeis.org
1, -3, 1, 7, -6, 1, -18, 24, -9, 1, 47, -84, 50, -12, 1, -123, 275, -225, 85, -15, 1, 322, -864, 900, -468, 129, -18, 1, -843, 2639, -3339, 2219, -840, 182, -21, 1, 2207, -7896, 11756, -9528, 4610, -1368, 244, -24, 1, -5778, 23256, -39825, 38121, -22518, 8532, -2079, 315, -27, 1, 15127, -67650, 130975
Offset: 0
Rows begin
1;
-3,1;
7,-6,1;
-18,24,-9,1;
47,-84,50,-12,1;
-123,275,-225,85,-15,1;
A220673
Coefficients of formal series in powers of (tan(x))^2 for tan(5*x)/tan(x).
Original entry on oeis.org
5, 40, 376, 3560, 33720, 319400, 3025400, 28657000, 271443000, 2571145000, 24354235000, 230686625000, 2185095075000, 20697517625000, 196049700875000, 1857009420625000, 17589845701875000, 166613409915625000, 1578184870646875000
Offset: 0
Q(5,x=0.1) = tan(0.5)/tan(0.1) = 5.444802663 (Maple 10 digits);
G(5,tan(0.1)^2) = 5.444802664;
Sum_{n>=0} a(n)*(tan(0.1))^(2*n) = 5.444802664.
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((5-10*x+x^2)/(1-10*x+5*x^2))); // G. C. Greubel, Mar 06 2018
-
CoefficientList[Series[(5-10*x+x^2)/(1-10*x+5*x^2), {x,0,50}], x] (* G. C. Greubel, Mar 06 2018 *)
-
my(x='x+O('x^30)); Vec((5-10*x+x^2)/(1-10*x+5*x^2)) \\ G. C. Greubel, Mar 06 2018
A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
Showing 1-4 of 4 results.
Comments