cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080929 Sequence associated with a(n) = 2*a(n-1) + k*(k+2)*a(n-2).

Original entry on oeis.org

1, 3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

The third column of number triangle A080928.

Crossrefs

Essentially the same as A052482.

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 2^(n-1)*Binomial(n+2,2))); # G. C. Greubel, Jul 23 2019
  • Magma
    [n eq 0 select 1 else (n+1)*(n+2)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
    
  • Maple
    [seq (ceil(binomial(n+2,2)*2^(n-1)),n=0..30)]; # Zerinvary Lajos, Nov 01 2006
  • Mathematica
    CoefficientList[Series[(1-x)(1-2x+4x^2)/(1-2x)^3, {x,0,30}], x] (* Michael De Vlieger, Sep 21 2017 *)
    Join[{1}, LinearRecurrence[{6,-12,8}, {3,12,40}, 30]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    vector(30, n, n--; if(n==0,1, 2^(n-1)*binomial(n+2,2) )) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    [1]+[2^(n-1)*binomial(n+2,2) for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

G.f.: (1-x)*(1-2*x+4*x^2)/(1-2*x)^3.
For n>0, a(n) = (n+1)*(n+2)*2^(n-2). - Ralf Stephan, Jan 16 2004
a(n) = Sum_{k=0..n} Sum_{i=0..n} (k+1)*binomial(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 7 - 8*log(2).
Sum_{n>=0} (-1)^n/a(n) = 24*log(3/2) - 9. (End)