cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081007 a(n) = Fibonacci(4n+1) - 1, or Fibonacci(2n)*Lucas(2n+1).

Original entry on oeis.org

0, 4, 33, 232, 1596, 10945, 75024, 514228, 3524577, 24157816, 165580140, 1134903169, 7778742048, 53316291172, 365435296161, 2504730781960, 17167680177564, 117669030460993, 806515533049392, 5527939700884756, 37889062373143905, 259695496911122584
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

Comments

Also the index of the first of two consecutive triangular numbers whose sum is equal to the sum of two consecutive heptagonal numbers. - Colin Barker, Dec 20 2014

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+1)-1); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+1) -1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+1)-1) od # James Sellers, Mar 03 2003
  • Mathematica
    Table[Fibonacci[4n+1] -1, {n,0,30}] (* Wesley Ivan Hurt, Oct 06 2013 *)
    LinearRecurrence[{8,-8,1},{0,4,33},30] (* Harvey P. Dale, Jul 31 2018 *)
    Table[Fibonacci[2n]LucasL[2n+1], {n,0,30}] (* Rigoberto Florez, Apr 19 2019 *)
  • Maxima
    A081007(n):=fib(4*n+1)-1$
    makelist(A081007(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    concat(0, Vec(x*(4+x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
    
  • PARI
    vector(30, n, n--; fibonacci(4*n+1)-1) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+1)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(4+x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
a(n) = Sum_{i=1..2n} binomial(2n+i, 2n-i). - Wesley Ivan Hurt, Oct 06 2013
a(n) = Sum_{i=0..2n-1} F(i)*L(i+2), F(i) = A000045(i) and L(i) = A000032(i). - Rigoberto Florez, Apr 19 2019
Product_{n>=1} (1 - 1/a(n)) = (1 + 1/sqrt(5))/2 (A242671). - Amiram Eldar, Nov 28 2024

Extensions

More terms from James Sellers, Mar 03 2003