cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A142249 Triangle read by rows, a generalization of the Eulerian numbers based on Nielsen's generalized polylogarithm (case m = 2).

Original entry on oeis.org

-1, -1, 1, -1, 2, -1, 3, 3, -1, 4, 19, 4, -1, 5, 80, 65, 5, -1, 6, 286, 566, 181, 6, -1, 7, 945, 3710, 2905, 455, 7, -1, 8, 2997, 20756, 31781, 12636, 1079, 8, -1, 9, 9294, 105299, 278304, 218559, 49754, 2469, 9
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 18 2008

Keywords

Examples

			Triangle starts:
{-1}
{-1, 1}
{-1, 2}
{-1, 3,    3}
{-1, 4,   19,      4}
{-1, 5,   80,     65,      5}
{-1, 6,  286,    566,    181,      6}
{-1, 7,  945,   3710,   2905,    455,     7}
{-1, 8, 2997,  20756,  31781,  12636,  1079,    8}
{-1, 9, 9294, 105299, 278304, 218559, 49754, 2469, 9}
...
For example with n = 4 we have p(n, x ) = (2-1)! * (1 - x)^n * PolyLog(-n, 2, x)/x
  = x*(7 + 4*x) - (1 + 4*x + x^2)*log(1-x). Replacing log(1-x) by 1 reduces this to x*(7 + 4*x) - (1 + 4*x + x^2) = 3*x^2 + 3*x - 1 with coefficients [-1, 3, 3].
		

Crossrefs

Row sums are A081047.
A008292 (m=1), A142249 (m=2), A293298 (m=3 with an additional first column).
Cf. A293561 (column 3), A293562 (column 4).

Programs

  • Mathematica
    npl[n_, m_] := (m-1)! (1 - x)^n PolyLog[-n, m, x]/x;
    A142249Row[n_] := CoefficientList[FunctionExpand[npl[n, 2]], x] /. Log[1-x] -> 1;
    Table[A142249Row[n], {n, 1, 10}] // Flatten
    (* Some older versions of Mathematica might use: *)
    Flatten[Table[CoefficientList[Simplify[(1-x)^n * PolyLog[-n, 2, x] / (x*Log[1-x])], x]/.x->1-E, {n, 1, 15}]] (* Vaclav Kotesovec, Oct 12 2017 *)

Formula

Let p(n, m) = (m - 1)!*(1 - x)^n*PolyLog(-n, m, x)/x and P(n) the polynomial given by the expansion of p(n, m=2) after replacing log(1 - x) by 1. T(n, k) is the k-th coefficient of P(n). Using instead p(n, m=1) gives the Eulerian numbers A008292.

Extensions

Edited by Peter Luschny, Oct 11 2017

A189924 a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)).

Original entry on oeis.org

1, 2, 5, 15, 49, 140, -64, -8540, -146124, -2124936, -30374136, -445116672, -6793958016, -108691150464, -1826654613120, -32257962443520, -598196854045440, -11635261535301120, -237044583523514880, -5050811716879104000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 21 2011

Keywords

Comments

This is the fourth (k=3) column sequence in triangle A094645 without leading zeros.

Crossrefs

Cf. A081047 (column k=2).

Programs

  • Magma
    [Abs(StirlingFirst(n+2,2)) - Abs(StirlingFirst(n+2,3)): n in [0..30]]; // G. C. Greubel, Jan 13 2018
  • Mathematica
    Table[Abs[StirlingS1[n+2,2]]-Abs[StirlingS1[n+2,3]],{n,0,20}] (* Harvey P. Dale, May 21 2015 *)
  • PARI
    a(n)=abs(stirling(n+2,2))-abs(stirling(n+2,3)) \\ Charles R Greathouse IV, Jun 27 2011
    

Formula

a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)), with the unsigned Stirling1 numbers abs(Stirling1(n,k)) = A132393(n,k).
E.g.f.: (1/2)*(2-log(1-x)^2)/(1-x)^2 (from differentiating three times (1-x)*((-log(1-x))^3)/3!).

A372624 Expansion of e.g.f. exp(1 - exp(x)) * (exp(x) - 1)^2 / 2.

Original entry on oeis.org

0, 0, 1, 0, -5, -10, 16, 154, 365, -750, -9749, -35222, 20956, 1013220, 6007821, 10272092, -129948837, -1405396426, -6318145964, 7407235766, 371429230721, 3172609248526, 11070816858267, -73488239926510, -1500342260080360, -11917913896465720, -31231507292803479
Offset: 0

Views

Author

Ilya Gutkovskiy, May 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[1 - Exp[x]] (Exp[x] - 1)^2/2, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k StirlingS2[n, k] Binomial[k, 2], {k, 0, n}], {n, 0, 26}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * binomial(k,2).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,2) * A000587(n-k).
Showing 1-3 of 3 results.