cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081048 Signed Stirling numbers of the first kind.

Original entry on oeis.org

0, 1, -3, 11, -50, 274, -1764, 13068, -109584, 1026576, -10628640, 120543840, -1486442880, 19802759040, -283465647360, 4339163001600, -70734282393600, 1223405590579200, -22376988058521600, 431565146817638400, -8752948036761600000, 186244810780170240000
Offset: 0

Views

Author

Paul Barry, Mar 05 2003

Keywords

Examples

			a(9): coefficient of p^2 in polynomial p (p - 1) (p - 2) (p - 3) (p - 4) (p - 5) (p - 6) (p - 7) (p - 8) = -1 + 40320 p - 109584 p^2 + 118124 p^3 - 67284 p^4 + 22449 p^5 - 4536 p^6 + 546 p^7 - 36 p^8 + p^9 is equal to -109584. - _Artur Jasinski_, Nov 30 2008
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Log(1+x)/(1+x))); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Aug 28 2018
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, (1-2*n)*a(n-1) -(n-1)^2*a(n-2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 06 2013
  • Mathematica
    aa = {}; Do[AppendTo[aa,Coefficient[Expand[Product[p - n, {n, 0, m}]], p, 2]], {m, 1, 20}]; aa (* Artur Jasinski, Nov 30 2008 *)
    a[n_] := (-1)^(n+1)*n!*HarmonicNumber[n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 29 2017 *)
    Table[StirlingS1[n, 2], {n, 1, 20}] (* Vaclav Kotesovec, Mar 03 2022 *)
  • PARI
    a(n)=stirling(n,2) \\ Charles R Greathouse IV, May 08 2015
    

Formula

a(n) = n!*Sum {k=1..n} (-1)^(n+1)*1/k.
E.g.f.: log(1+x)/(1+x).
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + (n-1)^2*a(n-2) = 0. (Proved by Reshetnikov.) - R. J. Mathar, Nov 24 2012
a(n) = (-1)^(n-1)*det(S(i+2,j+1), 1 <= i,j <= n-1), where S(n,k) are Stirling numbers of the second kind and n>0. - Mircea Merca, Apr 06 2013
a(n) ~ n! * (-1)^(n+1) * (log(n) + gamma), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 05 2013