cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081142 12th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 36, 864, 17280, 311040, 5225472, 83607552, 1289945088, 19349176320, 283787919360, 4086546038784, 57954652913664, 811365140791296, 11234286564802560, 154070215745863680, 2095354934143746048
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001021 (powers of 12).

Crossrefs

Cf. A001021.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), this sequence (q=12), A027476 (q=15).

Programs

  • GAP
    List([0..20],n->12^(n-2)*Binomial(n,2)); # Muniru A Asiru, Nov 24 2018
  • Magma
    [12^(n-2)* Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(coeff(series(x^2/(1-12*x)^3,x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    LinearRecurrence[{36,-432,1728},{0,0,1},30] (* or *) Table[(n-1) (n-2) 3^(n-3) 2^(2n-7),{n,20}] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    vector(20, n, n--; 2^(2*n-5)*3^(n-2)*n*(n-1)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [2^(2*n-5)*3^(n-2)*n*(n-1) for n in range(20)] # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = 36*a(n-1) - 432*a(n-2) + 1728*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 12^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 12*x)^3.
a(n) = 2^(2*n-5)*3^(n-2)*n*(n-1). - Harvey P. Dale, Jul 25 2013
E.g.f.: (1/2)*exp(12*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 24 - 264*log(12/11).
Sum_{n>=2} (-1)^n/a(n) = 312*log(13/12) - 24. (End)