A081143 5th binomial transform of (0,0,0,1,0,0,0,0,......).
0, 0, 0, 1, 20, 250, 2500, 21875, 175000, 1312500, 9375000, 64453125, 429687500, 2792968750, 17773437500, 111083984375, 683593750000, 4150390625000, 24902343750000, 147857666015625, 869750976562500, 5073547363281250
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (20,-150,500,-625).
Programs
-
Magma
[5^(n-3) * Binomial(n, 3): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
Maple
seq(binomial(n,3)*5^(n-3), n=0..25); # Zerinvary Lajos, Jun 03 2008
-
Mathematica
CoefficientList[Series[x^3/(1-5x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *) LinearRecurrence[{20,-150,500,-625}, {0,0,0,1}, 30] (* Harvey P. Dale, Dec 24 2015 *)
-
PARI
vector(31, n, my(m=n-1); 5^(m-3)*binomial(m,3)) \\ G. C. Greubel, Mar 05 2020
-
Sage
[lucas_number2(n, 5, 0)*binomial(n,3)/5^3 for n in range(0, 22)] # Zerinvary Lajos, Mar 12 2009
Formula
a(n) = 20*a(n-1) - 150*a(n-2) + 500*a(n-3) - 625*a(n-4), with a(0)=a(1)=a(2)=0, a(3)=1.
a(n) = 5^(n-3)*binomial(n,3).
G.f.: x^3/(1-5*x)^4.
E.g.f.: x^3*exp(x)/6. - G. C. Greubel, Mar 05 2020
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=3} 1/a(n) = 240*log(5/4) - 105/2.
Sum_{n>=3} (-1)^(n+1)/a(n) = 540*log(6/4) - 195/2. (End)
Comments