cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177102 Beatty sequence for sqrt(10).

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 22, 25, 28, 31, 34, 37, 41, 44, 47, 50, 53, 56, 60, 63, 66, 69, 72, 75, 79, 82, 85, 88, 91, 94, 98, 101, 104, 107, 110, 113, 117, 120, 123, 126, 129, 132, 135, 139, 142, 145, 148, 151, 154, 158, 161, 164, 167, 170, 173, 177, 180, 183
Offset: 1

Views

Author

Clark Kimberling, Aug 16 2011

Keywords

Crossrefs

Partial sums of A081168.

Programs

  • Magma
    [Floor(n*Sqrt(10)): n in [1..60]]; // Vincenzo Librandi, Oct 24 2011
    
  • Mathematica
    Table[Floor[n*Sqrt[10]],{n,1,100}]
  • PARI
    for(n=1,50, print1(floor(n*sqrt(10)), ", ")) \\ G. C. Greubel, Sep 24 2017

Formula

a(n) = floor(n*sqrt(10)).

A081129 Differences of Beatty sequence for cube root of 3.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Benoit Cloitre, Apr 16 2003

Keywords

Crossrefs

Programs

  • Magma
    A081129:= func< n | Floor((n+1)*3^(1/3)) - Floor(n*3^(1/3)) >;
    [A081129(n): n in [0..120]]; // G. C. Greubel, Jan 15 2024
    
  • Mathematica
    Differences[Floor[Range[0,110]Surd[3,3]]] (* Harvey P. Dale, Apr 06 2022 *)
  • PARI
    a(n)=floor((n+1)*3^(1/3))-floor(n*3^(1/3))
    
  • SageMath
    def A081129(n): return floor((n+1)*3^(1/3)) - floor(n*3^(1/3))
    [A081129(n) for n in range(121)] # G. C. Greubel, Jan 15 2024

Formula

a(n) = floor((n+1)*3^(1/3)) - floor(n*3^(1/3)).

A081147 First differences of A022839.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2
Offset: 0

Views

Author

Benoit Cloitre, Apr 16 2003

Keywords

Comments

Differences of Beatty sequence for square root of 5.
Let S(0) = 2; obtain S(k) from S(k-1) by applying 2 -> 2223, 3 -> 22223; sequence is S(0), S(1), S(2), ...

Crossrefs

Programs

  • Magma
    A081147:= func< n | Floor((n+1)*Sqrt(5)) - Floor(n*Sqrt(5)) >;
    [A081147(n): n in [0..120]]; // G. C. Greubel, Jan 15 2024
    
  • Mathematica
    Flatten[ Table[ Nest[ Flatten[ # /. {2 -> {2, 2, 2, 3}, 3 -> {2, 2, 2, 2, 3}}] &, {2}, n], {n,0,4}]] (* Robert G. Wilson v, May 07 2005 *)
    Differences[Table[Floor[n Sqrt[5]],{n,0,110}]] (* Harvey P. Dale, May 05 2019 *)
  • PARI
    a(n)=floor((n+1)*sqrt(5))-floor(n*sqrt(5))
    
  • SageMath
    def A081147(n): return floor((n+1)*sqrt(5)) - floor(n*sqrt(5))
    [A081147(n) for n in range(121)] # G. C. Greubel, Jan 15 2024

Formula

a(n) = floor((n+1)*sqrt(5)) - floor(n*sqrt(5)).
Showing 1-3 of 3 results.