cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081129 Differences of Beatty sequence for cube root of 3.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Benoit Cloitre, Apr 16 2003

Keywords

Crossrefs

Programs

  • Magma
    A081129:= func< n | Floor((n+1)*3^(1/3)) - Floor(n*3^(1/3)) >;
    [A081129(n): n in [0..120]]; // G. C. Greubel, Jan 15 2024
    
  • Mathematica
    Differences[Floor[Range[0,110]Surd[3,3]]] (* Harvey P. Dale, Apr 06 2022 *)
  • PARI
    a(n)=floor((n+1)*3^(1/3))-floor(n*3^(1/3))
    
  • SageMath
    def A081129(n): return floor((n+1)*3^(1/3)) - floor(n*3^(1/3))
    [A081129(n) for n in range(121)] # G. C. Greubel, Jan 15 2024

Formula

a(n) = floor((n+1)*3^(1/3)) - floor(n*3^(1/3)).

A134142 List of quadruples: 2*(-4)^n, -3*(-4)^n, 2*(-4^n), 2*(-4)^n, n >= 0.

Original entry on oeis.org

2, -3, 2, 2, -8, 12, -8, -8, 32, -48, 32, 32, -128, 192, -128, -128, 512, -768, 512, 512, -2048, 3072, -2048, -2048, 8192, -12288, 8192, 8192, -32768, 49152, -32768, -32768, 131072, -196608, 131072, 131072, -524288, 786432, -524288, -524288, 2097152, -3145728, 2097152, 2097152, -8388608
Offset: 0

Views

Author

Paul Curtz, Jan 29 2008

Keywords

Crossrefs

Programs

  • Maple
    A134142 := proc(n) (-4)^floor(n/4)*op(1+(n mod 4), [2,-3,2,2]) ; end: for n from 0 to 80 do printf("%d ",A134142(n)) ; od: # R. J. Mathar, Feb 05 2008

Formula

O.g.f.: (x+2)/(2*x^2+2*x+1). a(n) = 2*A108520(n)+A108520(n-1). - R. J. Mathar, Feb 05 2008
a(n) = (1 - I/2)*(-1 - I)^n + (1 + I/2)*(-1 + I)^n, n>=0. - Taras Goy, Apr 20 2019
a(n) = -2*a(n-1)-2*a(n-2) for n > 1. - Chai Wah Wu, May 19 2025
E.g.f.: exp(-x)*(2*cos(x) - sin(x)). - Stefano Spezia, May 19 2025

Extensions

More terms from R. J. Mathar, Feb 05 2008
Showing 1-2 of 2 results.