cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081179 3rd binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 6, 29, 132, 589, 2610, 11537, 50952, 224953, 993054, 4383653, 19350540, 85417669, 377052234, 1664389721, 7346972688, 32431108081, 143157839670, 631929281453, 2789470811028, 12313319895997, 54353623698786
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of 0, 1, 4, 14, 48, ... (A007070 with offset 1) and second binomial transform of A000129. - R. J. Mathar, Dec 10 2011

Crossrefs

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
  • Maple
    f:= gfun:-rectoproc({a(n) = 6*a(n-1)-7*a(n-2), a(0)=0, a(1)=1},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 15 2016
  • Mathematica
    CoefficientList[Series[x/(1-6 x +7 x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{6,-7}, {0,1}, 41] (* G. C. Greubel, Jan 14 2024 *)
  • Sage
    [lucas_number1(n,6,7) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 6*a(n-1) - 7*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1-6*x+7*x^2).
a(n) = ((3+sqrt(2))^n - (3-sqrt(2))^n)/(2*sqrt(2)). [Corrected by Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008]
a(n) = 3^(n-1) Sum_{i>=0} binomial(n, 2i+1) * (2/9)^i. - Sergio Falcon, Mar 15 2016
a(n) = 2^(-1/2)*7^(n/2)*sinh(n*arcsinh(sqrt(2/7))). - Robert Israel, Mar 15 2016
E.g.f.: exp(3*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
a(n) = 7^((n-1)/2)*ChebyshevU(n-1, 3/sqrt(7)). - G. C. Greubel, Jan 14 2024