cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081182 5th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 10, 77, 540, 3629, 23870, 155233, 1003320, 6462841, 41552050, 266875157, 1713054420, 10992415589, 70523904230, 452413483753, 2902085040240, 18615340276081, 119405446835290, 765901642003037, 4912691142818700
Offset: 0

Views

Author

Paul Barry, Mar 12 2003

Keywords

Crossrefs

Binomial transform of A081181.
Cf. A081183.

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 10*Self(n-1)-23*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    Join[{a=0,b=1},Table[c=10*b-23*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
    CoefficientList[Series[x / (1 - 10 x + 23 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{10,-23},{0,1},30] (* Harvey P. Dale, Jun 06 2021 *)
  • Sage
    [lucas_number1(n,10,23) for n in range(0, 21)] # Zerinvary Lajos, Apr 26 2009
    

Formula

a(n) = 10a(n-1) - 23a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1 - 10x + 23x^2).
a(n) = ((5 + sqrt(2))^n - (5 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2k+1) 2^k*5^(n-2k-1).
E.g.f.: exp(5*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017