A081200 6th binomial transform of (0,1,0,1,0,1,...), A000035.
0, 1, 12, 109, 888, 6841, 51012, 372709, 2687088, 19200241, 136354812, 964249309, 6798573288, 47834153641, 336059778612, 2358521965909, 16540171339488, 115933787267041, 812299450322412, 5689910849522509, 39848449432985688, 279034513462540441, 1953718431395986212
Offset: 0
Examples
The a(2) = 12 words of length 2 over {A, B, C, D, E, F, G} with say, A, appearing an odd number of times (that is once) are: AB, AC, AD, AE, AF, AG; BA, CA, DA, EA, FA, GA. - _Wolfdieter Lang_, Jul 17 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- Index entries for linear recurrences with constant coefficients, signature (12,-35).
Crossrefs
Programs
-
Magma
[7^n/2-5^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
-
Mathematica
CoefficientList[Series[x / ((1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{12,-35},{0,1},30] (* Harvey P. Dale, Feb 07 2014 *)
-
Sage
[lucas_number1(n,12,35) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009
Formula
a(n) = 12*a(n-1) - 35*a(n-2), a(0) = 0, a(1) = 1.
G.f.: x/((1-5*x)*(1-7*x)).
a(n) = 7^n/2 - 5^n/2.
a(n) = Sum_{k=0..n-1} 7^k * 5^(n-k-1), with a(0)=0. - Reinhard Zumkeller, Aug 01 2010
a(n) = A121213(n)/2. - Reinhard Zumkeller, Aug 01 2010
E.g.f.: exp(5*x)*(exp(2*x) - 1)/2. - Stefano Spezia, Jun 19 2021
Comments