cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081251 Numbers n such that A081249(m)/m^2 has a local maximum for m = n.

Original entry on oeis.org

2, 6, 20, 60, 182, 546, 1640, 4920, 14762, 44286, 132860, 398580, 1195742, 3587226, 10761680, 32285040, 96855122, 290565366, 871696100, 2615088300, 7845264902, 23535794706, 70607384120, 211822152360, 635466457082, 1906399371246
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local maxima, lim A081249(n)/n^2 = 1/6. For local minima cf. A081250.
Also the number of different 4- and 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices, if the colors of the two base vertices are fixed. - Patrick Labarque, Mar 23 2010
From Toby Gottfried, Apr 18 2010: (Start)
a(n) = the number of ternary sequences of length n+1 where the numbers of (0's, 1's) are both odd.
A015518 covers the (odd, even) and (even, odd) cases, and A122983 covers (even, even). (End)

Examples

			6 is a term since A081249(5)/5^2 = 4/25 = 0.160, A081249(6)/6^2 = 7/36 = 0.194, A081249(7)/7^2 = 9/49 = 0.184.
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> (9*3^(n-1) -(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
  • Magma
    [Floor(3^(n+1)/4) : n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    seq(floor(3^(n+1)/4), n=1..30). # Mircea Merca, Dec 27 2010
  • Mathematica
    a[n_]:= Floor[3^(n+1)/4]; Array[a, 30]
    Table[(9*3^(n-1) -(-1)^n -2)/4, {n, 1, 30}] (* G. C. Greubel, Jul 14 2019 *)
  • PARI
    vector(30, n, (9*3^(n-1) -(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [(9*3^(n-1) -(-1)^n -2)/4 for n in (1..30)] # G. C. Greubel, Jul 14 2019
    

Formula

G.f.: 2/((1-x)*(1+x)*(1-3*x)).
a(n) = a(n-2) + 2*3^(n) for n > 1.
a(n+2) - a(n) = A008776(n).
a(n) = 2*A033113(n+1).
a(2*n+1) = A054880(n+1).
a(n) = floor(3^(n+1)/4). - Mircea Merca, Dec 26 2010
From G. C. Greubel, Jul 14 2019: (Start)
a(n) = (9*3^(n-1) -(-1)^n -2)/4.
E.g.f.: (3*exp(3*x) - 2*exp(x) - exp(-x))/4. (End)