A081251 Numbers n such that A081249(m)/m^2 has a local maximum for m = n.
2, 6, 20, 60, 182, 546, 1640, 4920, 14762, 44286, 132860, 398580, 1195742, 3587226, 10761680, 32285040, 96855122, 290565366, 871696100, 2615088300, 7845264902, 23535794706, 70607384120, 211822152360, 635466457082, 1906399371246
Offset: 1
Keywords
Examples
6 is a term since A081249(5)/5^2 = 4/25 = 0.160, A081249(6)/6^2 = 7/36 = 0.194, A081249(7)/7^2 = 9/49 = 0.184.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Klaus Brockhaus, Illustration for A081134, A081249, A081250 and A081251
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
Programs
-
GAP
List([1..30], n-> (9*3^(n-1) -(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
-
Magma
[Floor(3^(n+1)/4) : n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
seq(floor(3^(n+1)/4), n=1..30). # Mircea Merca, Dec 27 2010
-
Mathematica
a[n_]:= Floor[3^(n+1)/4]; Array[a, 30] Table[(9*3^(n-1) -(-1)^n -2)/4, {n, 1, 30}] (* G. C. Greubel, Jul 14 2019 *)
-
PARI
vector(30, n, (9*3^(n-1) -(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
-
Sage
[(9*3^(n-1) -(-1)^n -2)/4 for n in (1..30)] # G. C. Greubel, Jul 14 2019
Formula
G.f.: 2/((1-x)*(1+x)*(1-3*x)).
a(n) = a(n-2) + 2*3^(n) for n > 1.
a(n+2) - a(n) = A008776(n).
a(n) = 2*A033113(n+1).
a(2*n+1) = A054880(n+1).
a(n) = floor(3^(n+1)/4). - Mircea Merca, Dec 26 2010
From G. C. Greubel, Jul 14 2019: (Start)
a(n) = (9*3^(n-1) -(-1)^n -2)/4.
E.g.f.: (3*exp(3*x) - 2*exp(x) - exp(-x))/4. (End)
Comments