cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053307 Number of nonnegative integer 2 X 2 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 5, 11, 14, 24, 30, 45, 55, 76, 91, 119, 140, 176, 204, 249, 285, 340, 385, 451, 506, 584, 650, 741, 819, 924, 1015, 1135, 1240, 1376, 1496, 1649, 1785, 1956, 2109, 2299, 2470, 2680, 2870, 3101, 3311, 3564, 3795, 4071, 4324, 4624, 4900, 5225, 5525
Offset: 0

Views

Author

Vladeta Jovovic, Mar 05 2000

Keywords

Comments

An interleaved sequence of pyramidal and polygonal numbers: a(2n)= A006527(n+1), a(2n+1)=A000330(n+1) - Paul Barry, Mar 17 2003
a(n) is also the number of solutions to the equation XOR(x1, x2, ..., xn) = 0 such that each xi is a 2-bit binary number and xi >= xj for i >= j. For example, a(2) = 4 since (x1, x2) = { (00, 00), (01, 01), (10, 10), (11, 11) }. - Ramasamy Chandramouli, Jan 17 2009
These are also the "spreading numbers" alpha_4(n). See Babcock et al. for precise definition.

Crossrefs

Row 2 of A318795.
Row 4 of A202175.

Programs

  • Magma
    [(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48: n in [0..30]]; // G. C. Greubel, May 31 2018
  • Mathematica
    Table[(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48,{n,0,20}] (* Vaclav Kotesovec, Mar 16 2014 *)
  • PARI
    for(n=0,30, print1((n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48, ", ")) \\ G. C. Greubel, May 31 2018
    

Formula

G.f.: (x^2-x+1)/((1-x^2)^2*(1-x)^2).
a(n) = (n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48. - Vaclav Kotesovec, Mar 16 2014

A081284 An interleaved sequence of pyramidal and polygonal numbers.

Original entry on oeis.org

0, 1, 1, 6, 7, 22, 27, 62, 77, 147, 182, 308, 378, 588, 714, 1044, 1254, 1749, 2079, 2794, 3289, 4290, 5005, 6370, 7371, 9191, 10556, 12936, 14756, 17816, 20196, 24072, 27132, 31977, 35853, 41838, 46683, 53998, 59983, 68838, 76153, 86779, 95634
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x^3) / ((1 - x) (1 - x^2)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2013 *)

Formula

G.f.: x*(1+x^3)/((1-x)*(1-x^2)^5).
a(2*n) = A005585(n); a(2*n+1) = A081282(n+1).
G.f.: (x*(x^2-x+1))/((x+1)^4*(x-1)^6). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(2*n+9-(-1)^n)*(2*n^2+15*n+51+3*(n-5)*(-1)^n)/30720. - Luce ETIENNE, Mar 13 2015
Showing 1-2 of 2 results.