1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2
Offset: 1
From _John M. Campbell_, Sep 07 2018: (Start)
Letting m = 5, as above let (T(1) < T(2) < ... < T(42)) denote the lexicographic sequence of Young tableaux of shape (2, 2, 2, 2, 2). In this case, the sequence (f(T(1), T(43 - i)) - f(T(42 - i), T(43 - i)), i=1..41) is equal to (0, 1, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0). Removing the zeroes from this tuple, we obtain (1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3), which gives us the first 13 = A000108(m - 1) - 1 terms in this sequence. For example, the first term in the preceding tuple is 0 since T(1) and T(42) are respectively
[ 5 10] [ 9 10]
[ 4 9 ] [ 7 8 ]
[ 3 8 ] [ 5 6 ]
[ 2 7 ] [ 3 4 ]
[ 1 6 ] [ 1 2 ]
and T(41) is equal to
[ 9 10]
[ 7 8 ]
[ 5 6 ]
[ 2 4 ]
[ 1 3 ]
so that the first letter of disagreement between T(1) and T(42) is 2, and that between T(41) and T(42) is also 2. (End)
Comments