A081374 Size of "uniform" Hamming covers of distance 1, that is, Hamming covers in which all vectors of equal weight are treated the same, included or excluded from the cover together.
1, 2, 2, 5, 10, 22, 43, 86, 170, 341, 682, 1366, 2731, 5462, 10922, 21845, 43690, 87382, 174763, 349526, 699050, 1398101, 2796202, 5592406, 11184811, 22369622, 44739242, 89478485, 178956970, 357913942, 715827883, 1431655766, 2863311530, 5726623061
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2).
Crossrefs
Cf. A083322.
Programs
-
Magma
I:=[1,2,2,5]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-3)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 08 2016
-
Maple
hatwork := proc(n,i,covered) local val, val2; options remember; # computes the minimum cover of the i-bit through n-bit words. # if covered is true the i-bit words are already covered (by the (i-1)-bit words) if (i>n or (i = n and covered)) then 0; elif (i = n and not covered) then 1; else # one choice is to include the i-bit words in the cover val := hatwork(n, i+1, true) + binomial(n,i); # the other choice is not to include the i-bit words in the cover if (covered) then val2 := hatwork (n, i+1, false); if (val2 < val) then val := val2; fi; else # if the i-bit words were not covered by (i-1), they must be covered by the (i+1)-bit words if (i <= n) then val2 := hatwork (n, i+2, true) + binomial(n,i+1); if (val2 < val) then val := val2; fi; fi; fi; val; fi; end proc; A081374 := proc (n) hatwork(n, 0, false); end proc;
-
Mathematica
LinearRecurrence[{2,0,-1,2},{1,2,2,5},40] (* Harvey P. Dale, Feb 11 2015 *)
Formula
If (n mod 6 = 5) then sum(binomial(n, 3*i+1), i=0..n/3); elif (n mod 6 = 2) then sum(binomial(n, 3*i), i=0..n/3)+1; else sum(binomial(n, 3*i), i=0..n/3); fi;
G.f.: x*(2*x^3-2*x^2+1)/( (1-2*x)*(1+x)*(1-x+x^2) ).
a(n)=2*a(n-1)-a(n-3)+2*a(n-4).
From Paul Curtz, May 26 2011: (Start)
a(n+1) - 2*a(n) has period length 6: repeat 0, -2, 1, 0, 2, -1 (see A080425).
a(n) + a(n+3) = 3*2^n = A007283(n).
a(n+6)-a(n) = 21*2^n = A175805(n).
Comments