cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083322 a(n) = 2^n - A081374(n).

Original entry on oeis.org

1, 2, 6, 11, 22, 42, 85, 170, 342, 683, 1366, 2730, 5461, 10922, 21846, 43691, 87382, 174762, 349525, 699050, 1398102, 2796203, 5592406, 11184810, 22369621, 44739242, 89478486, 178956971, 357913942, 715827882, 1431655765, 2863311530, 5726623062
Offset: 1

Views

Author

David Applegate, Aug 22 2003

Keywords

Crossrefs

Cf. A081374.
Trisections: A082365, A007613, A132804.

Programs

  • Magma
    I:=[1,2,6,11]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-3)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 08 2016
  • Mathematica
    CoefficientList[Series[(1 + 2 x^2) / ((1 - 2 x) (1 + x) (1 - x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2016 *)
    LinearRecurrence[{2,0,-1,2},{1,2,6,11},40] (* Harvey P. Dale, Jan 30 2024 *)

Formula

G.f.: x*(1+2*x^2) / ( (1-2*x)*(1+x)*(1-x+x^2) ). - R. J. Mathar, May 27 2011
From Paul Curtz, May 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4).
a(n)+a(n+3) = 3*2^(n+1) = A007283(n+1).
a(n+6)-a(n) = 21*2^(n+1) = A175805(n+1).
(End)

A082311 A Jacobsthal sequence trisection.

Original entry on oeis.org

1, 5, 43, 341, 2731, 21845, 174763, 1398101, 11184811, 89478485, 715827883, 5726623061, 45812984491, 366503875925, 2932031007403, 23456248059221, 187649984473771, 1501199875790165, 12009599006321323, 96076792050570581, 768614336404564651, 6148914691236517205
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Crossrefs

Programs

  • Magma
    [2*8^n/3+(-1)^n/3 : n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    f[n_] := (2*8^n + (-1)^n)/3; Array[f, 25, 0] (* Robert G. Wilson v, Aug 13 2011 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)/((1+x)*(1-8*x))) \\ G. C. Greubel, Sep 16 2018

Formula

a(n) = (2*8^n + (-1)^n)/3 = A001045(3*n+1).
From R. J. Mathar, Feb 23 2009: (Start)
a(n) = 7*a(n-1) + 8*a(n-2).
G.f.: (1-2*x)/((1+x)*(1-8*x)). (End)
a(n) = A024494(3*n+1). a(n) = 8*a(n-1) + 3*(-1)^n. Sum of digits = A070366. - Paul Curtz, Nov 20 2007
a(n)= A007613(n) + A132805(n) = A081374(1+3*n). - Paul Curtz, Jun 06 2011
E.g.f.: (cosh(x) + 2*cosh(8*x) - sinh(x) + 2*sinh(8*x))/3. - Stefano Spezia, Jul 15 2024

A081375 a(n) is the least number k such that A081373(k) = n.

Original entry on oeis.org

1, 2, 6, 12, 30, 42, 72, 78, 84, 90, 190, 216, 222, 228, 234, 252, 270, 540, 546, 570, 630, 738, 744, 770, 792, 858, 900, 924, 930, 990, 1050, 1638, 1710, 1890, 1980, 2100, 2310, 2418, 2442, 2508, 2562, 2574, 2604, 2700, 2772, 2790, 2850, 2970, 3150
Offset: 1

Views

Author

Labos Elemer, Mar 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Count[Table[EulerPhi[j]-EulerPhi[x], {j, 1, x}], 0] t=Table[0, {50}]; Do[s=f[n]; If[s<51&&t[[s]]==0, t[[s]]=n], {n, 1, 4000}]; t
  • PARI
    lista(len) = {my(v = vector(len), c = 0, k = 1, i); while(c < len, i = #select(x -> x <= k, invphi(eulerphi(k))); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 08 2024, using Max Alekseyev's invphi.gp

A242563 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4), a(0)=a(1)=0, a(2)=2, a(3)=3.

Original entry on oeis.org

0, 0, 2, 3, 6, 10, 21, 42, 86, 171, 342, 682, 1365, 2730, 5462, 10923, 21846, 43690, 87381, 174762, 349526, 699051, 1398102, 2796202, 5592405, 11184810, 22369622, 44739243, 89478486, 178956970, 357913941, 715827882, 1431655766, 2863311531, 5726623062, 11453246122
Offset: 0

Views

Author

Paul Curtz, May 17 2014

Keywords

Comments

Generally, a(n) is an autosequence if its inverse binomial transform is (-1)^n*a(n). It is of the first kind if the main diagonal is 0's and the first two upper diagonals (just above the main one) are the same. It is of the second kind if the main diagonal is equal to the first upper diagonal multiplied by 2. If the first upper diagonal is an autosequence, the sequence is a super autosequence. Example: A113405. The first upper diagonal is A001045(n). Another super autosequence: 0, 0, 0 followed by A059633(n). The first upper diagonal is A000045(n).
Difference table of a(n):
0, 0, 2, 3, 6, 10, 21, 42, ...
0, 2, 1, 3, 4, 11, 21, 44, ...
2, -1, 2, 1, 7, 10, 23, 41, ...
-3, 3, -1, 6, 3, 13, 18, 45, ... .
This is an autosequence of the second kind. The main diagonal is 2*A001045(n) = A078008(n). More precisely it is a super autosequence, companion of A113405(n).
a(n+1) mod 10 = period 12: repeat 0, 2, 3, 6, 0, 1, 2, 6, 1, 2, 2, 5.
It is shifted A081374(n+1) mod 10 =
period 12: repeat 1, 2, 2, 5, 0, 2, 3, 6, 0, 1, 2, 6.
a(n) mod 9 = period 18:
repeat 0, 0, 2, 3, 6, 1, 3, 6, 5, 0, 0, 7, 6, 3, 8, 6, 3, 4 = c(n).
c(n) + c(n+9) = 0, 0, 9, 9, 9, 9, 9, 9, 9.

Examples

			G.f. = 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 21*x^6 + 42*x^7 + 86*x^8 + ...
		

Crossrefs

Cf. A000032, 1/(n+1), A164555/A027642 (all autosequences of 2nd kind). A007283, A175805.

Programs

  • Mathematica
    a[n_] := (m = Mod[n, 6]; 1/3*(2^n + (-1)^n + 1/120*(m-6)*(m+1)*(m^3-29*m+40))); Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 19 2014, a non-recursive formula, after Mathematica's RSolve *)
    LinearRecurrence[{2, 0, -1, 2}, {0, 0, 2, 3},50] (* G. C. Greubel, Feb 21 2017 *)
  • PARI
    concat([0,0], Vec(x^2*(x-2)/((x+1)*(2*x-1)*(x^2-x+1)) + O(x^100))) \\ Colin Barker, May 18 2014

Formula

a(n+3) = 3*2^n - a(n), a(0)=a(1)=0, a(2)=2.
a(n) = 2*A113405(n+1) - A113405(n).
a(n+1) = 2*a(n) + period 6: repeat 0, 2, -1, 0, -2, 1. a(0)=0.
a(n) = 2^n - A081374(n+1).
a(n+3) = a(n+1) + A130755(n).
G.f.: x^2*(x-2) / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, May 18 2014
a(n) = A024495(n) + A131531(n).
a(n+6) = a(n) + 21*2^n, a(0)=a(1)=0, a(2)=2, a(3)=3, a(4)=6, a(5)=10.
a(n) = A001045(n) - A092220(n).
a(n+12) = a(n) + 1365*2^n. First 12 values in the Data. (A024495(n+12) = A024495(n) + 1365*2^n).
a(3n) = A132805(n) = 3*A015565(n).
a(3n+1) = A132804(n) = 6*A015565(n).
a(3n+2) = A132397(n) = 2*A082311(n).
a(n) = 1/3*((-1)^n - 2*cos((n*Pi)/3) + 2^n). - Alexander R. Povolotsky, Jun 02 2014

Extensions

More terms from Colin Barker, May 18 2014
Showing 1-4 of 4 results.