cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081399 Bigomega of the n-th Catalan number: a(n) = A001222(A000108(n)).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 3, 4, 4, 5, 5, 6, 7, 9, 7, 8, 8, 10, 9, 10, 10, 11, 11, 11, 12, 12, 11, 13, 13, 14, 11, 13, 14, 14, 13, 14, 14, 16, 15, 16, 18, 19, 19, 19, 19, 21, 19, 20, 19, 21, 20, 21, 21, 21, 19, 20, 20, 22, 22, 24, 25, 25, 23, 23, 23, 24, 24, 27, 26, 27, 25, 27, 28, 29, 28
Offset: 0

Views

Author

Labos Elemer, Mar 28 2003

Keywords

Comments

It is easy to show that a(n) is between n/log(n) and 2n/log(n) (for n>n0), cf. [Campbell 1984]. The sequence A137687, roughly the middle of this interval, is a fair approximation for A081399. See A137686 for the (signed) difference of the two sequences.

Crossrefs

Programs

  • Maple
    with(numtheory):a:=proc(n) if n=0 then 0 else bigomega(binomial(2*n,n)/(1+n)) fi end: seq(a(n), n=0..75); # Zerinvary Lajos, Apr 11 2008
  • Mathematica
    a[n_] := PrimeOmega[ CatalanNumber[n]]; Table[a[n], {n, 0, 75}] (* Jean-François Alcover, Jul 02 2013 *)
  • PARI
    A081399(n)=bigomega(prod(i=2,n,(n+i)/i)) \\ M. F. Hasler, Feb 06 2008

Formula

a(n)=A001222[A000108(n)]

Extensions

Edited and extended by M. F. Hasler, Feb 06 2008

A081407 4th-order non-linear ("factorial") recursion: a(0)=a(1)=a(2)=a(3)=1, a(n) = (n+1)*a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 5, 6, 7, 8, 45, 60, 77, 96, 585, 840, 1155, 1536, 9945, 15120, 21945, 30720, 208845, 332640, 504735, 737280, 5221125, 8648640, 13627845, 20643840, 151412625, 259459200, 422463195, 660602880, 4996616625, 8821612800
Offset: 0

Views

Author

Labos Elemer, Apr 01 2003

Keywords

Examples

			Following sequences are interleaved: A007696: {5,45,585,..}; A000404: {6,60,840,..} A034176: {7,77,1155,..}; A034177: {8,96,1536,..}
		

Crossrefs

Programs

  • GAP
    a:= function(k)
        if k<4 then return 1;
        elif k<7 then return k+1;
        else return (k+1)*a(k-4);
        fi;
      end;
    List([0..35], n-> a(n) ); # G. C. Greubel, Aug 24 2019
  • Haskell
    a081407 n = a081408_list !! n
    a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Magma
    a:= func< n | n le 3 select 1 else n in [4..6] select n+1 else (n+1)*Self(n-3) >;
    [a(n): n in [0..35]]; // G. C. Greubel, Aug 24 2019
    
  • Mathematica
    f[n_]:= (n+1)*f[n-4]; f[0]=1; f[1]=1; f[2]=1; f[3]=1; Table[f[n], {n, 0, 40}]
    nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,a(n+2)}; NestList[nxt,{3,1,1,1,1},40][[;;,2]] (* Harvey P. Dale, Jan 13 2025 *)
  • PARI
    a(n) = if(n<4, 1, (n+1)*a(n-4) );
    vector(35, n, a(n-1)) \\ G. C. Greubel, Aug 24 2019
    
  • Sage
    def a(n):
        if n<4: return 1
        elif 4<= n <= 6: return n+1
        else: return (n+1)*a(n-4)
    [a(n) for n in (0..35)] # G. C. Greubel, Aug 24 2019
    

A249159 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 4, 7, 2, 2, 15, 18, 24, 4, 4, 24, 57, 30, 36, 4, 4, 105, 174, 282, 88, 100, 8, 8, 192, 561, 414, 570, 120, 132, 8, 8, 945, 1950, 3660, 1620, 2040, 312, 336, 16, 16, 1920, 6555, 6090, 9360, 2820, 3360, 392, 416, 16, 16, 10395, 25290, 53370
Offset: 0

Views

Author

Clark Kimberling, Oct 23 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + n)/(2*f(n-1,x)), where f(0,x) = 1.
(Sum of numbers in row n) = A000982(n+1) for n >= 0.
Column 1 is essentially A081405.

Crossrefs

Programs

  • Mathematica
    z = 15; f[x_, n_] := 1 + n/(2 f[x, n - 1]); f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249159 array *)
    Flatten[CoefficientList[u, x]] (* A249159 sequence *)

Formula

f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x;
f(2,x) = (3 + 2 x + x^2)/(1 + x), so that p(2,x) = 3 + 2 x + x^2.
First 6 rows of the triangle of coefficients:
1
1 1
3 2 2
4 7 2 2
15 18 24 4 4
24 57 30 36 4 4

A081406 a(n) = (n+1)*a(n-3), a(0)=a(1)=a(2)=1 for n>1.

Original entry on oeis.org

1, 1, 1, 4, 5, 6, 28, 40, 54, 280, 440, 648, 3640, 6160, 9720, 58240, 104720, 174960, 1106560, 2094400, 3674160, 24344320, 48171200, 88179840, 608608000, 1252451200, 2380855680, 17041024000, 36321084800, 71425670400, 528271744000, 1162274713600
Offset: 0

Views

Author

Labos Elemer, Apr 01 2003

Keywords

Examples

			a(3n+2)=A034001[n]; while other subsequences are near(but not equal) to A001669, A000359.
		

Crossrefs

Programs

  • GAP
    a:= function(k)
        if k<3 then return 1;
        elif k<6 then return k+1;
        else return (k+1)*a(k-3);
        fi;
      end;
    List([0..35], n-> a(n) ); # G. C. Greubel, Aug 24 2019
  • Magma
    a:= func< n | n le 2 select 1 else n in [3..5] select n+1 else (n+1)*Self(n-2) >;
    [a(n): n in [0..35]]; // G. C. Greubel, Aug 24 2019
    
  • Mathematica
    f[n_]:= (n+1)*f[n-3]; f[0]=1; f[1]=1; f[2]=1; Table[f[n], {n, 30}]
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(n+1)a[n-3]},a,{n,30}] (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    a(n) = if(n<3, 1, (n+1)*a(n-3) );
    vector(35, n, a(n-1)) \\ G. C. Greubel, Aug 24 2019
    
  • Sage
    def a(n):
        if n<3: return 1
        elif 3<= n <= 5: return n+1
        else: return (n+1)*a(n-3)
    [a(n) for n in (0..35)] # G. C. Greubel, Aug 24 2019
    

Extensions

Corrected and extended by Harvey P. Dale, Mar 06 2019

A081408 a(n) = (n+1)*a(n-5), with a(0)=a(1)=a(2)=a(3)=a(4)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 7, 8, 9, 10, 66, 84, 104, 126, 150, 1056, 1428, 1872, 2394, 3000, 22176, 31416, 43056, 57456, 75000, 576576, 848232, 1205568, 1666224, 2250000, 17873856, 27143424, 39783744, 56651616, 78750000, 643458816, 1004306688, 1511782272
Offset: 0

Views

Author

Labos Elemer, Apr 01 2003

Keywords

Comments

Quintic factorial sequences are generated by single 5-order recursion and appear in unified form.

Examples

			A008548, A034323, A034300, A034301, A034325 sequences are combed together as A081408(5n+r) with r=0,1,2,3,4.
		

Crossrefs

Cf. A001147, A002866, A034001, A007599, A034000, A007696, A000407, A034176, A034177, A008548, A034323, A034300, A034301, A034325 [double, triple, quartic, quintic, factorial subsequences], generated together in A081405-A081408.

Programs

  • GAP
    a:=[1,1,1,1,1];; for n in [6..40] do a[n]:=n*a[n-5]; od; a; # G. C. Greubel, Aug 15 2019
  • Haskell
    a081407 n = a081408_list !! n
    a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Magma
    [n le 5 select 1 else n*Self(n-5): n in [1..40]]; // G. C. Greubel, Aug 15 2019
    
  • Mathematica
    a[0]=a[1]=a[2]=a[3]=a[4]=1; a[x_]:= (x+1)*a[x-5]; Table[a[n], {n, 40}]
  • PARI
    m=30; v=concat([1,1,1,1,1], vector(m-5)); for(n=6, m, v[n]=n*v[n-5] ); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    def a(n):
        if (n<5): return 1
        else: return (n+1)*a(n-5)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 15 2019
    
Showing 1-5 of 5 results.