A081507 Numbers k for which 2^k + 3^k + 4^k is prime.
0, 2, 4, 6, 8, 108, 144, 334, 1422, 4824, 16502, 19050, 23262
Offset: 1
Examples
k=2: 2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29 (a prime).
Crossrefs
Cf. A081506.
Programs
-
Magma
[n: n in [0..400] | IsPrime(2^n+3^n+4^n)]; // Vincenzo Librandi, Sep 05 2017
-
Mathematica
Do[s=2^w+3^w+4^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}] Do[ If[ PrimeQ[2^w+3^w+4^w], Print[n]], {n, 0, 5000}] Select[Range[5000], PrimeQ[Plus@@({2,3,4}^#)]&] (* Harvey P. Dale, Jan 03 2011 *) DeleteCases[ParallelTable[If[PrimeQ[(2^n)+(3^n)+(4^n)],n,a],{n,0,19050}],a] (* J.W.L. (Jan) Eerland, Dec 20 2021 *)
-
PARI
isok(k) = isprime(2^k + 3^k + 4^k); \\ Michel Marcus, Sep 05 2017
Extensions
a(9)-a(10) from Robert G. Wilson v, Jul 22 2005
a(11)-a(12) from J.W.L. (Jan) Eerland, Dec 20 2021
Offset corrected by Jon E. Schoenfield, Dec 20 2021
a(13) from Michael S. Branicky, Mar 31 2023
Comments