A081569 Fourth binomial transform of F(n+1).
1, 5, 26, 139, 757, 4172, 23165, 129217, 722818, 4050239, 22718609, 127512940, 715962889, 4020920141, 22584986378, 126867394723, 712691811325, 4003745802188, 22492567804517, 126361939999081, 709898671705906, 3988211185370615, 22405825905923321, 125876420631268204
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (9,-19).
Programs
-
GAP
a:=[1,5];; for n in [3..30] do a[n]:=9*a[n-1]-19*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
-
Magma
I:=[1, 5]; [n le 2 select I[n] else 9*Self(n-1)-19*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
-
Maple
seq(coeff(series((1-4*x)/(1-9*x+19*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 12 2019
-
Mathematica
CoefficientList[Series[(1-4x)/(1 -9x +19x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
-
PARI
Vec((1-4*x)/(1-9*x+19*x^2) + O(x^30)) \\ Altug Alkan, Dec 10 2015
-
Sage
def A081569_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-4*x)/(1-9*x+19*x^2)).list() A081569_list(30) # G. C. Greubel, Aug 12 2019
Formula
a(n) = 9*a(n-1) - 19*a(n-2) for n >= 2, with a(0) = 1 and a(1) = 5.
a(n) = (1/2 - sqrt(5)/10)*(9/2 - sqrt(5)/2)^n + (sqrt(5)/10 + 1/2)*(sqrt(5)/2 + 9/2)^n.
G.f.: (1 - 4*x)/(1 - 9*x + 19*x^2).
a(n) = Sum_{k=0..n} A094441(n,k)*4^k. - Philippe Deléham, Dec 14 2009
E.g.f.: exp(9*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024
Comments