cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081575 Fifth binomial transform of Fibonacci numbers F(n).

Original entry on oeis.org

0, 1, 11, 92, 693, 4955, 34408, 234793, 1584891, 10624804, 70911005, 471901739, 3134499984, 20794349393, 137837343787, 913174649260, 6047638172037, 40041955063867, 265079998713464, 1754663288995961, 11613976216265115
Offset: 0

Views

Author

Paul Barry, Mar 24 2003

Keywords

Comments

Binomial transform of A081574.
Case k=5 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2), a(0)=0, a(1)=1.

References

  • S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=11*a[n-1]-29*a[n-2]; od; a; # G. C. Greubel, Aug 13 2019
  • Magma
    [n le 2 select (n-1) else 11*Self(n-1)-29*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 09 2013
    
  • Maple
    seq(coeff(series(x/(1-11*x+29*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 13 2019
  • Mathematica
    LinearRecurrence[{11,-29}, {0,1}, 30] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011; modified by G. C. Greubel, Aug 13 2019 *)
    CoefficientList[Series[x/(1 -11x +29x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(x/(1-11*x+29*x^2)) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [lucas_number1(n,11,29) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 11*a(n-1) - 29*a(n-2), a(0)=0, a(1)=1.
a(n) = ((sqrt(5)/2 + 11/2)^n - (11/2 - sqrt(5)/2)^n)/sqrt(5).
G.f.: x/(1 - 11*x + 29*x^2). - adapted by Vincenzo Librandi, Aug 09 2013
E.g.f.: 2*exp(11*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Aug 12 2017