cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081720 Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 3, 1, 4, 10, 1, 6, 21, 55, 1, 8, 39, 136, 377, 1, 13, 92, 430, 1505, 4291, 1, 18, 198, 1300, 5895, 20646, 60028, 1, 30, 498, 4435, 25395, 107331, 365260, 1058058, 1, 46, 1219, 15084, 110085, 563786, 2250311, 7472984, 21552969, 1, 78, 3210, 53764, 493131, 3037314
Offset: 1

Views

Author

N. J. A. Sloane, based on information supplied by Gary W. Adamson, Apr 05 2003

Keywords

Comments

From Petros Hadjicostas, Nov 29 2017: (Start)
The formula given below is clear from the programs given in the Maple and Mathematica sections, while the g.f. for column k can be obtained using standard techniques.
If we differentiate the column k g.f. m times, then we can get a formula for row m. (For this sequence, we only need to use this row m formula for 1 <= k <= m, but it is valid even for k>m.) For example, to get the formula for row 8, we have T(n=8,k) = d^8/dx^8 (column k g.f.)/8! evaluated at x=0. Here, "d^8/dx^8" means "8th derivative w.r.t. x" of the column k g.f. Doing so, we get T(n=8, k) = (k^6 - k^5 + k^4 + 3*k^3 + 2*k^2 - 2*k + 4)*(k + 1)*k/16, which is the formula given for sequence A060560. (Here, we use this formula only for 1 <= k <= 8.)
(End)

Examples

			1;                                                (A000027)
1,  3;                                            (A000217)
1,  4,  10;                                       (A000292)
1,  6,  21,   55;                                 (A002817)
1,  8,  39,  136,   377;                          (A060446)
1, 13,  92,  430,  1505,   4291;                  (A027670)
1, 18, 198, 1300,  5895,  20646,  60028;          (A060532)
1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560)
...
For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017
		

References

  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Cf. A321791 (extension to n >= 0, k >= 0).
Cf. A081721 (diagonal), A081722 (row sums), column sequences k=2..6: A000029, A027671, A032275, A032276, A056341.

Programs

  • Maple
    A081720 := proc(n, k)
        local d, t1;
        t1 := 0;
        if n mod 2 = 0 then
            for d from 1 to n do
                if n mod d = 0 then
                    t1 := t1+numtheory[phi](d)*k^(n/d);
                end if;
            end do:
            (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ;
        else
            for d from 1 to n do
                if n mod d = 0 then
                    t1 := t1+numtheory[phi](d)*k^(n/d);
                end if;
            end do;
            (t1+n*k^((n+1)/2)) /(2*n) ;
        end if;
    end proc:
    seq(seq(A081720(n,k),k=1..n),n=1..10) ;
  • Mathematica
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2012, after Maple, updated Nov 02 2017 *)
    Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid  (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)

Formula

See Maple code.
From Petros Hadjicostas, Nov 29 2017: (Start)
T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.
G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n
(End)
2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - R. J. Mathar, Jan 23 2022

Extensions

Name edited by Petros Hadjicostas, Nov 29 2017