A081837 Let z(n) be e = exp(1.0) = 2.7182.... truncated to n decimal digits after the decimal point; sequence gives maximum element in the continued fraction for z(n).
2, 3, 4, 12, 9, 10, 12, 11, 9, 10, 8, 22, 13, 13, 15, 12, 35, 30, 48, 18, 166, 166, 68, 40, 73, 137, 57, 1288, 62, 28, 416, 552, 138, 47, 24, 156, 110, 31, 463, 85, 108, 106, 295, 295, 54, 98, 40, 388, 216, 32, 49, 199, 488, 47, 64, 822, 51, 152, 854, 38, 701, 88, 94, 149
Offset: 0
Examples
... Here is Maple's computation of the first four terms of the sequence a: ....C2 := 2 ....cf := [2] ....a := [2] ..........27 ....C2 := -- ..........10 ....cf := [2, 1, 2, 3] ....a := [2, 3] ..........271 ....C2 := --- ..........100 ....cf := [2, 1, 2, 2, 4, 3] ....a := [2, 3, 4] ..........1359 ....C2 := ---- ..........500 ....cf := [2, 1, 2, 1, 1, 4, 1, 12] ....a := [2, 3, 4, 12]
Links
Programs
-
Maple
with(numtheory); Digits:=200: C1 := exp(1.0); for n from 1 to 100 do C2:= floor(C1*10^(n-1))/10^(n-1); cf := convert(evalf(C2),confrac): a := [op(a),max(cf)]; od: a; # N. J. A. Sloane, Jun 19 2024
-
Mathematica
A081837[n_] := Max[ContinuedFraction[Floor[E*10^n]/10^n]]; Array[A081837, 100, 0] (* Paolo Xausa, Jun 21 2024 *)
Extensions
Definition, initial term, and offset clarified by N. J. A. Sloane, Jun 19 2024 following a suggestion from Harvey P. Dale.