cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082033 a(n) = (3n+1)*n!.

Original entry on oeis.org

1, 4, 14, 60, 312, 1920, 13680, 110880, 1008000, 10160640, 112492800, 1357171200, 17723059200, 249080832000, 3748666521600, 60153020928000, 1025216704512000, 18495746260992000, 352130553815040000, 7055415823712256000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the number array A082037.

Crossrefs

Programs

Formula

a(n) = A016777(n)*n!.
3*a(n) +(-3*n-5)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014

A082034 a(n) = (4*n + 1)*n!.

Original entry on oeis.org

1, 5, 18, 78, 408, 2520, 18000, 146160, 1330560, 13426560, 148780800, 1796256000, 23471078400, 330032102400, 4969162598400, 79768136448000, 1359981342720000, 24542432538624000, 467373280518144000, 9366672731480064000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the array A082037.

Crossrefs

Programs

Formula

a(n) = A016813(n)*n!.
(-4*n+3)*a(n) + n*(4*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 07 2014
4*a(n) + (-4*n-7)*a(n-1) + 3*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 07 2014

A082038 A square array of quadratic-factorial numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 6, 1, 13, 42, 78, 24, 1, 21, 86, 258, 504, 120, 1, 31, 146, 546, 1752, 3720, 720, 1, 43, 222, 942, 3768, 13320, 30960, 5040, 1, 57, 314, 1446, 6552, 28920, 113040, 287280, 40320, 1, 73, 422, 2058, 10104, 50520, 246960, 1063440
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Rows include A000142, A001564, A082035, A082036.

Examples

			Rows begin
1 1 2 6 24 ...
1 3 14 78 504 ...
1 7 42 258 1752 ...
1 13 86 546 3768 ...
1 21 146 942 6552 ...
		

Crossrefs

Formula

Square array defined by T(n, k)=((kn)^2+kn+1)n!

A082042 a(n) = (n^2+1)*n!.

Original entry on oeis.org

1, 2, 10, 60, 408, 3120, 26640, 252000, 2620800, 29756160, 366508800, 4869849600, 69455232000, 1058593536000, 17174123366400, 295534407168000, 5377157001216000, 103149354147840000, 2080771454361600000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Main diagonal of A082037
a(n) = total number of runs when each permutation on [n+1] is split into maximal monotone runs. (A monotone run is a sequence of consecutive entries whose differences are all 1 or all -1. Example: 34-1-765-2 contributes 4 runs to a(6) as indicated.) - David Callan, Nov 16 2003
a(n) is also the number of distinct planar embeddings of the (n+1)-Sierpinski gasket graph. - Eric W. Weisstein, May 21 2024

Crossrefs

Cf. A018932. [From R. J. Mathar, Dec 15 2008]

Formula

a(n) = A002522(n)*A000142(n).
D-finite with recurrence (n^2-2*n+2)*a(n) -n*(n^2+1)*a(n-1)=0. - R. J. Mathar, Dec 03 2014
Showing 1-4 of 4 results.