A082032
Expansion of e.g.f.: exp(2*x)/(1-2*x).
Original entry on oeis.org
1, 4, 20, 128, 1040, 10432, 125248, 1753600, 28057856, 505041920, 10100839424, 222218469376, 5333243269120, 138664325005312, 3882601100165120, 116478033004986368, 3727297056159629312, 126728099909427527680, 4562211596739391258624, 173364040676096868352000, 6934561627043874735128576
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[2x]/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 02 2021 *)
-
my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-2*x))) \\ Michel Marcus, Jan 27 2019
A320582
Number T(n,k) of permutations p of [n] such that |{ j : |p(j)-j| = 1 }| = k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 2, 0, 4, 0, 5, 6, 10, 2, 1, 21, 36, 42, 12, 9, 0, 117, 226, 219, 104, 47, 6, 1, 792, 1568, 1472, 800, 328, 64, 16, 0, 6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1, 55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0, 543597, 1085560, 1030649, 614420, 255830, 77732, 17750, 2876, 365, 20, 1
Offset: 0
T(4,0) = 5: 1234, 1432, 3214, 3412, 4231.
T(4,1) = 6: 2431, 3241, 3421, 4132, 4213, 4312.
T(4,2) = 10: 1243, 1324, 1342, 1423, 2134, 2314, 2413, 3124, 3142, 4321.
T(4,3) = 2: 2341, 4123.
T(4,4) = 1: 2143.
Triangle T(n,k) begins:
1;
1, 0;
1, 0, 1;
2, 0, 4, 0;
5, 6, 10, 2, 1;
21, 36, 42, 12, 9, 0;
117, 226, 219, 104, 47, 6, 1;
792, 1568, 1472, 800, 328, 64, 16, 0;
6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1;
55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0;
...
-
b:= proc(s) option remember; expand((n-> `if`(n=0, 1, add(
`if`(abs(n-j)=1, x, 1)*b(s minus {j}), j=s)))(nops(s)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b({$1..n})):
seq(T(n), n=0..12);
-
b[s_] := b[s] = Expand[With[{n = Length[s]}, If[n==0, 1, Sum[
If[Abs[n-j]==1, x, 1]*b[s~Complement~{j}], {j, s}]]]];
T[n_] := PadRight[CoefficientList[b[Range[n]], x], n+1];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)
A082037
A square array of linear-factorial numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 10, 24, 24, 1, 5, 14, 42, 120, 120, 1, 6, 18, 60, 216, 720, 720, 1, 7, 22, 78, 312, 1320, 5040, 5040, 1, 8, 26, 96, 408, 1920, 9360, 40320, 40320, 1, 9, 30, 114, 504, 2520, 13680, 75600, 362880, 362880
Offset: 0
Rows begin
1 1 2 6 ....
1 2 6 24 ...
1 3 10 42 ...
1 4 14 60 ...
1 5 18 78 ...
A082034
a(n) = (4*n + 1)*n!.
Original entry on oeis.org
1, 5, 18, 78, 408, 2520, 18000, 146160, 1330560, 13426560, 148780800, 1796256000, 23471078400, 330032102400, 4969162598400, 79768136448000, 1359981342720000, 24542432538624000, 467373280518144000, 9366672731480064000
Offset: 0
Showing 1-4 of 4 results.
Comments