cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082032 Expansion of e.g.f.: exp(2*x)/(1-2*x).

Original entry on oeis.org

1, 4, 20, 128, 1040, 10432, 125248, 1753600, 28057856, 505041920, 10100839424, 222218469376, 5333243269120, 138664325005312, 3882601100165120, 116478033004986368, 3727297056159629312, 126728099909427527680, 4562211596739391258624, 173364040676096868352000, 6934561627043874735128576
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Binomial transform of A010844. a(n) = b such that Integral_{x=0..1} (2*x)^n*exp(-x) dx = c - b*exp(-1). - Francesco Daddi, Jul 31 2011

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-2*x))) \\ Michel Marcus, Jan 27 2019

Formula

E.g.f.: exp(2*x)/(1-2*x)
a(n) = 2^n*A000522(n). - Vladeta Jovovic, Oct 29 2003
a(n) = 2n*a(n)+2^n, n>0, a(0)=1. - Paul Barry, Aug 26 2004
a(n) +2*(-n-1)*a(n-1) +4*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - 2*x*(k+1)/(1-2*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - 4*x*(k+1) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = 2^n*hypergeometric_U(1,n+2,1). - Peter Luschny, Nov 26 2014

Extensions

More terms from Michel Marcus, Jan 27 2019

A320582 Number T(n,k) of permutations p of [n] such that |{ j : |p(j)-j| = 1 }| = k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 4, 0, 5, 6, 10, 2, 1, 21, 36, 42, 12, 9, 0, 117, 226, 219, 104, 47, 6, 1, 792, 1568, 1472, 800, 328, 64, 16, 0, 6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1, 55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0, 543597, 1085560, 1030649, 614420, 255830, 77732, 17750, 2876, 365, 20, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 23 2019

Keywords

Examples

			T(4,0) = 5: 1234, 1432, 3214, 3412, 4231.
T(4,1) = 6: 2431, 3241, 3421, 4132, 4213, 4312.
T(4,2) = 10: 1243, 1324, 1342, 1423, 2134, 2314, 2413, 3124, 3142, 4321.
T(4,3) = 2: 2341, 4123.
T(4,4) = 1: 2143.
Triangle T(n,k) begins:
      1;
      1,      0;
      1,      0,      1;
      2,      0,      4,     0;
      5,      6,     10,     2,     1;
     21,     36,     42,    12,     9,    0;
    117,    226,    219,   104,    47,    6,    1;
    792,   1568,   1472,   800,   328,   64,   16,   0;
   6205,  12360,  11596,  6652,  2658,  688,  148,  12,  1;
  55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25,  0;
  ...
		

Crossrefs

Column k=0 gives A078480.
Row sums give A000142.
Main diagonal gives A059841.

Programs

  • Maple
    b:= proc(s) option remember; expand((n-> `if`(n=0, 1, add(
         `if`(abs(n-j)=1, x, 1)*b(s minus {j}), j=s)))(nops(s)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b({$1..n})):
    seq(T(n), n=0..12);
  • Mathematica
    b[s_] := b[s] = Expand[With[{n = Length[s]}, If[n==0, 1, Sum[
         If[Abs[n-j]==1, x, 1]*b[s~Complement~{j}], {j, s}]]]];
    T[n_] := PadRight[CoefficientList[b[Range[n]], x], n+1];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A052582(n-1) for n > 0.
Sum_{k=0..n} (k+1) * T(n,k) = A082033(n-1) for n > 0.

A082037 A square array of linear-factorial numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 10, 24, 24, 1, 5, 14, 42, 120, 120, 1, 6, 18, 60, 216, 720, 720, 1, 7, 22, 78, 312, 1320, 5040, 5040, 1, 8, 26, 96, 408, 1920, 9360, 40320, 40320, 1, 9, 30, 114, 504, 2520, 13680, 75600, 362880, 362880
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Rows include A000142(n), A000142(n+1), A007680, A082033, A082034. Columns include 2!*A005408(n),3!*A016777(n),4!*A016813(n),5!*A016861. Main diagonal is A082042.

Examples

			Rows begin
1 1 2 6 ....
1 2 6 24 ...
1 3 10 42 ...
1 4 14 60 ...
1 5 18 78 ...
		

Crossrefs

Cf. A077038.

Formula

Square array defined by T(n, k)=(kn+1)n!

A082034 a(n) = (4*n + 1)*n!.

Original entry on oeis.org

1, 5, 18, 78, 408, 2520, 18000, 146160, 1330560, 13426560, 148780800, 1796256000, 23471078400, 330032102400, 4969162598400, 79768136448000, 1359981342720000, 24542432538624000, 467373280518144000, 9366672731480064000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the array A082037.

Crossrefs

Programs

Formula

a(n) = A016813(n)*n!.
(-4*n+3)*a(n) + n*(4*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 07 2014
4*a(n) + (-4*n-7)*a(n-1) + 3*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 07 2014
Showing 1-4 of 4 results.