A082021
a(0) = 7; for n > 0, a(n) is the greatest prime factor of PP(PP(a(n-1)))*a(n-1)+2 where PP(n) is an abbreviation for PreviousPrime(n).
Original entry on oeis.org
7, 23, 131, 47, 643, 2459, 2000807, 503347241, 82125909539251, 9617692012399, 55555555342491359799151, 1116817987709786226917069, 578610396154837, 66992050984853, 254497141, 1660738053545999, 201525986561, 25600818891233, 796725607788661087, 23547857117470471
Offset: 0
-
NestWhileList[FactorInteger[2+#*Prime[PrimePi[ # ]-2]][[ -1,1]] &, 7, True, 8] (* T. D. Noe, Nov 15 2006 *)
NestList[FactorInteger[NextPrime[NextPrime[#,-1],-1]#+2][[-1,1]]&,7,20] (* Harvey P. Dale, Dec 26 2017 *)
A295100
a(n) = n! * [x^n] exp(n*x)/(1 - 2*x).
Original entry on oeis.org
1, 3, 20, 201, 2688, 44815, 894528, 20792205, 551518208, 16438822587, 543934387200, 19783668211153, 784536321392640, 33689132092480839, 1557397919735103488, 77117362592836807125, 4072280214605427376128, 228441851811771488284915, 13566762607790788699226112, 850372121882700252639269337
Offset: 0
-
S:= series(exp(n*x)/(1-2*x),x,51):
seq(n!*coeff(S,x,n),n=0..50); # Robert Israel, Nov 14 2017
-
Table[n! SeriesCoefficient[Exp[n x]/(1 - 2 x), {x, 0, n}], {n, 0, 19}]
A136807
Hankel transform of double factorial numbers n!*2^n=A000165(n).
Original entry on oeis.org
1, 4, 256, 589824, 86973087744, 1282470362637926400, 2723154477021188283432960000, 1133321924829207204666583887642624000000, 120746421332702772771144114237731253721340313600000000
Offset: 0
-
[1] cat [(&*[(2*k)^(2*(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
-
Table[Product[(2k)^(2(n-k+1)),{k,n}],{n,0,10}] (* Harvey P. Dale, Apr 11 2013 *)
-
for(n=0,10, print1(prod(k=1,n,(2*k)^(2*(n-k+1))), ", ")) \\ G. C. Greubel, Oct 14 2018
A097814
E.g.f. exp(3x)/(1-3x).
Original entry on oeis.org
1, 6, 45, 432, 5265, 79218, 1426653, 29961900, 719092161, 19415508030, 582465299949, 19221355075464, 691968783248145, 26986782548271978, 1133444867032206045, 51005019016463620932, 2448240912790296851457
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[3x]/(1-3x),{x,0,nn}],x] Range[ 0,nn]!] (* or *) RecurrenceTable[{a[0]==1,a[n]==3n a[n-1]+3^n},a,{n,20}] (* Harvey P. Dale, Feb 23 2012 *)
A097815
E.g.f. exp(4x)/(1-4x).
Original entry on oeis.org
1, 8, 80, 1024, 16640, 333824, 8015872, 224460800, 7182811136, 258581463040, 10343259570176, 455103425282048, 21844964430315520, 1135938150443515904, 63612536425105326080, 3816752185507393306624, 244272139872477466591232
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[4x]/(1-4x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 02 2017 *)
Showing 1-5 of 5 results.
Comments