cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082021 a(0) = 7; for n > 0, a(n) is the greatest prime factor of PP(PP(a(n-1)))*a(n-1)+2 where PP(n) is an abbreviation for PreviousPrime(n).

Original entry on oeis.org

7, 23, 131, 47, 643, 2459, 2000807, 503347241, 82125909539251, 9617692012399, 55555555342491359799151, 1116817987709786226917069, 578610396154837, 66992050984853, 254497141, 1660738053545999, 201525986561, 25600818891233, 796725607788661087, 23547857117470471
Offset: 0

Views

Author

Yasutoshi Kohmoto, May 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    NestWhileList[FactorInteger[2+#*Prime[PrimePi[ # ]-2]][[ -1,1]] &, 7, True, 8] (* T. D. Noe, Nov 15 2006 *)
    NestList[FactorInteger[NextPrime[NextPrime[#,-1],-1]#+2][[-1,1]]&,7,20] (* Harvey P. Dale, Dec 26 2017 *)

Extensions

Description corrected by Rick L. Shepherd, Dec 19 2004
Corrected by T. D. Noe, Nov 15 2006
More terms from Harvey P. Dale, Dec 26 2017
a(19) from Tyler Busby, Oct 12 2023

A295100 a(n) = n! * [x^n] exp(n*x)/(1 - 2*x).

Original entry on oeis.org

1, 3, 20, 201, 2688, 44815, 894528, 20792205, 551518208, 16438822587, 543934387200, 19783668211153, 784536321392640, 33689132092480839, 1557397919735103488, 77117362592836807125, 4072280214605427376128, 228441851811771488284915, 13566762607790788699226112, 850372121882700252639269337
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A000165.

Crossrefs

Programs

  • Maple
    S:= series(exp(n*x)/(1-2*x),x,51):
    seq(n!*coeff(S,x,n),n=0..50); # Robert Israel, Nov 14 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/(1 - 2 x), {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2^n * exp(n/2) * n!. - Vaclav Kotesovec, Nov 14 2017
a(n) = n! * Sum_{k=0..n} n^k*2^(n-k)/k! = 2^n*Gamma(n+1, n/2)*exp(n/2). - Robert Israel, Nov 14 2017

A136807 Hankel transform of double factorial numbers n!*2^n=A000165(n).

Original entry on oeis.org

1, 4, 256, 589824, 86973087744, 1282470362637926400, 2723154477021188283432960000, 1133321924829207204666583887642624000000, 120746421332702772771144114237731253721340313600000000
Offset: 0

Views

Author

Paul Barry, Jan 23 2008

Keywords

Comments

By the properties of the Hankel transform, a(n)=2^(n(n+1))*A055209(n).
Also Hankel transform of A000354, A010844, A082032. - Philippe Deléham, Jan 23 2008

Crossrefs

Programs

  • Magma
    [1] cat [(&*[(2*k)^(2*(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Product[(2k)^(2(n-k+1)),{k,n}],{n,0,10}] (* Harvey P. Dale, Apr 11 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=1,n,(2*k)^(2*(n-k+1))), ", ")) \\ G. C. Greubel, Oct 14 2018
    

Formula

a(n) = Product_{k=1..n} (2k)^(2(n-k+1)).
a(n) ~ 2^((n+1)^2) * Pi^(n+1) * n^(n^2 + 2*n + 5/6) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019

A097814 E.g.f. exp(3x)/(1-3x).

Original entry on oeis.org

1, 6, 45, 432, 5265, 79218, 1426653, 29961900, 719092161, 19415508030, 582465299949, 19221355075464, 691968783248145, 26986782548271978, 1133444867032206045, 51005019016463620932, 2448240912790296851457
Offset: 0

Views

Author

Paul Barry, Aug 26 2004

Keywords

Crossrefs

Cf. A082032.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3x]/(1-3x),{x,0,nn}],x] Range[ 0,nn]!] (* or *) RecurrenceTable[{a[0]==1,a[n]==3n a[n-1]+3^n},a,{n,20}] (* Harvey P. Dale, Feb 23 2012 *)

Formula

a(n) = 3n*a(n-1)+3^n, n>0, a(0)=1; a(n) = 3^n*A000522(n).
G.f.: 1/Q(0), where Q(k) = 1 - 6*x*(k+1) - 9*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
Conjecture: a(n) +3*(-n-1)*a(n-1) +9*(n-1)*a(n-2)=0. - R. J. Mathar, Dec 21 2014

A097815 E.g.f. exp(4x)/(1-4x).

Original entry on oeis.org

1, 8, 80, 1024, 16640, 333824, 8015872, 224460800, 7182811136, 258581463040, 10343259570176, 455103425282048, 21844964430315520, 1135938150443515904, 63612536425105326080, 3816752185507393306624, 244272139872477466591232
Offset: 0

Views

Author

Paul Barry, Aug 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[4x]/(1-4x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 02 2017 *)

Formula

a(n) = 4n*a(n-1)+4^n, n>0, a(0)=1; a(n) = 4^n*A000522(n).
G.f.: 1/Q(0), where Q(k) = 1 - 8*x*(k+1) - 16*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
D-finite with recurrence a(n) +4*(-n-1)*a(n-1) +16*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 19 2015
Showing 1-5 of 5 results.