A082040 a(n) = 9*n^2 + 3*n + 1.
1, 13, 43, 91, 157, 241, 343, 463, 601, 757, 931, 1123, 1333, 1561, 1807, 2071, 2353, 2653, 2971, 3307, 3661, 4033, 4423, 4831, 5257, 5701, 6163, 6643, 7141, 7657, 8191, 8743, 9313, 9901, 10507, 11131, 11773, 12433, 13111, 13807, 14521, 15253, 16003, 16771, 17557
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..5000
- Nicolay Avilov, Graphic illustration of sequence members
- P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, On minimum metric dimension of honeycomb networks, Journal of Discrete Algorithms, Vol. 6 (2008), pp. 20-27.
- Leo Tavares, Snowflake illustration.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n->9*n^2+3*n+1); # Muniru A Asiru, May 21 2018
-
Maple
seq(9*n^2+3*n+1,n=0..50); # Muniru A Asiru, May 21 2018
-
PARI
a(n)=9*n^2+3*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 18*n + a(n-1) - 6 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (1 + 10*x + 7*x^2)/(1 - x)^3.
E.g.f.: (1 + 12*x + 9*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments