A082180 Composite integers k such that binomial(2*k, k) == 2 (mod k).
4, 9, 25, 49, 121, 125, 169, 289, 343, 361, 418, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 17161, 18769, 19321
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..3301 (terms 1..193 from David A. Corneth, terms 194..1320 from Giovanni Resta)
- Wikipedia, Wolstenholme's theorem
Programs
-
GAP
Filtered([1..1000],n->not IsPrime(n) and Binomial(2*n,n) mod n =2); # Muniru A Asiru, Aug 01 2018
-
Maple
select(n-> not isprime(n) and modp(binomial(2*n,n),n)=2,[$1..10000]); # Muniru A Asiru, Aug 01 2018
-
Mathematica
nn=20000;With[{comps=Complement[Range[nn],Prime[Range[PrimePi[nn]]]]}, Select[ comps,Mod[Binomial[2#,#],#]==2&]] (* Harvey P. Dale, May 24 2012 *) Select[Range@ 20000, CompositeQ@# && Mod[Binomial[2 #, #], #] == 2 &] (* Robert G. Wilson v, Aug 01 2018 *)
-
PARI
forcomposite(c=1, 2e4, if(Mod(binomial(2*c, c), c)==2, print1(c, ", "))) \\ Felix Fröhlich, Jul 30 2018
-
PARI
upto(n) = {my(binomp = 2, res = List()); for(t = 2, n, binomp *= (4 - 2/t); if(!isprime(t) && binomp % t == 2, listput(res, t))); res} \\ David A. Corneth, Aug 05 2018
Extensions
More terms from John W. Layman, Jun 09 2004
Comments