cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082180 Composite integers k such that binomial(2*k, k) == 2 (mod k).

Original entry on oeis.org

4, 9, 25, 49, 121, 125, 169, 289, 343, 361, 418, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 17161, 18769, 19321
Offset: 1

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

Also, composite integers k such that A000108(k) == 2 (mod k).
It seems that the sequence contains all squares of primes and some cubes of odd primes. But it includes other terms as well, including 418 = 2*11*19 and 27173 = 29*937. [edited by Jon E. Schoenfield, Jul 31 2018]
By Wolstenholme's theorem, this sequence does contain all squares of primes and cubes of primes > 3^3, since for primes p > 3 we have binomial(2p^3, p^3) == binomial(2p^2, p^2) == binomial(2p, p) == binomial(2, 1) == 2 (mod p^3). See the link below. - Jianing Song, Aug 01 2018
Note that binomial(2*(n+1), n+1) = binomial(2*n, n) * (4 - 2/(n+1)), which could be used to find terms. - David A. Corneth, Aug 05 2018
Up to a(800) = 30946969, 2001341 = 787 * 2543 is the only further term which, like 418 and 27173, is neither a square nor a cube. - Giovanni Resta, Aug 08 2018

Crossrefs

Programs

  • GAP
    Filtered([1..1000],n->not IsPrime(n) and Binomial(2*n,n) mod n =2); # Muniru A Asiru, Aug 01 2018
  • Maple
    select(n-> not isprime(n) and modp(binomial(2*n,n),n)=2,[$1..10000]); # Muniru A Asiru, Aug 01 2018
  • Mathematica
    nn=20000;With[{comps=Complement[Range[nn],Prime[Range[PrimePi[nn]]]]}, Select[ comps,Mod[Binomial[2#,#],#]==2&]] (* Harvey P. Dale, May 24 2012 *)
    Select[Range@ 20000, CompositeQ@# && Mod[Binomial[2 #, #], #] == 2 &] (* Robert G. Wilson v, Aug 01 2018 *)
  • PARI
    forcomposite(c=1, 2e4, if(Mod(binomial(2*c, c), c)==2, print1(c, ", "))) \\ Felix Fröhlich, Jul 30 2018
    
  • PARI
    upto(n) = {my(binomp = 2, res = List()); for(t = 2, n, binomp *= (4 - 2/t);
    if(!isprime(t) && binomp % t == 2, listput(res, t))); res} \\ David A. Corneth, Aug 05 2018
    

Extensions

More terms from John W. Layman, Jun 09 2004