cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082285 a(n) = 16*n + 13.

Original entry on oeis.org

13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253, 269, 285, 301, 317, 333, 349, 365, 381, 397, 413, 429, 445, 461, 477, 493, 509, 525, 541, 557, 573, 589, 605, 621, 637, 653, 669, 685, 701, 717, 733, 749, 765, 781, 797, 813, 829, 845
Offset: 0

Views

Author

Cino Hilliard, May 10 2003

Keywords

Comments

Solutions to (7^x + 11^x) mod 17 = 13.
a(n-2), n>=2, gives the second column in triangle A238476 related to the Collatz problem. - Wolfdieter Lang, Mar 12 2014

Crossrefs

Programs

  • Magma
    [[ n : n in [1..1000] | n mod 16 eq 13]]; // Vincenzo Librandi, Oct 10 2011
  • Mathematica
    Range[13, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
    LinearRecurrence[{2,-1},{13,29},60] (* Harvey P. Dale, Jan 28 2023 *)
  • PARI
    \\ solutions to 7^x+11^x == 13 mod 17
    anpbn(n) = { for(x=1,n, if((7^x+11^x-13)%17==0,print1(x" "))) }
    

Formula

a(n) = 16*n + 13.
a(n) = 32*n - a(n-1) + 10; a(0)=13. - Vincenzo Librandi, Oct 10 2011
From Stefano Spezia, Dec 27 2019: (Start)
O.g.f.: (13 + 3*x)/(1 - x)^2.
E.g.f.: exp(x)*(13 + 16*x). (End)
a(n) = A008594(n+1) + A016813(n+1) - 4. - Leo Tavares, Sep 22 2022
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A004770(2*n+2). (End)