cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001936 Expansion of q^(-1/4) * (eta(q^4) / eta(q))^2 in powers of q.

Original entry on oeis.org

1, 2, 5, 10, 18, 32, 55, 90, 144, 226, 346, 522, 777, 1138, 1648, 2362, 3348, 4704, 6554, 9056, 12425, 16932, 22922, 30848, 41282, 54946, 72768, 95914, 125842, 164402, 213901, 277204, 357904, 460448, 590330, 754368, 960948, 1220370, 1545306
Offset: 0

Views

Author

Keywords

Comments

The Cayley reference is actually to A079006. - Michael Somos, Feb 24 2011
In the math overflow link is a conjecture that a(n) == a(9*n + 2) (mod 4).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of 4-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The g.f. in the form A(x) = Sum_{k >= 0} x^(k*(k+1)) / (1 + 2*Sum_{k >= 1} (-1)^k * x^(k^2)) == Sum_{k >= 0} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 18*x^4 + 32*x^5 + 55*x^6 + 90*x^7 + 144*x^8 + ...
G.f. = q + 2*q^5 + 5*q^9 + 10*q^13 + 18*q^17 + 32*q^21 + 55*q^25 + 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548, A333374.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> [2,2,2,0] [modp(n-1,4)+1]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
    f:=(k,M) -> mul(1-q^(k*j),j=1..M); LRBP := (L,M) -> (f(L,M)/f(1,M))^2; S := L -> seriestolist(series(LRBP(L,80),q,60)); S(4); # N. J. A. Sloane, Oct 20 2019
  • Mathematica
    m = 38; CoefficientList[ Series[ Product[ (1 - x^(4*k))/(1 - x^k), {k, 1, m}]^2 , {x, 0, m}], x] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]) / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x] QPochhammer[ -x^2, x^2])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 / if(k%4, 1 - x^k, 1), 1 + x * O(x^n))^2, n))};

Formula

G.f.: Product ( 1 - x^k )^(-c(k)); c(k) = 2, 2, 2, 0, 2, 2, 2, 0, ....
Convolution square of A001935. A079006(n) = (-1)^n a(n).
Expansion of q^(-1/4) * (1/2) * (k / k')^(1/2) in powers of q.
Euler transform of period 4 sequence [ 2, 2, 2, 0, ...].
Given g.f. A(x), then B(q) = (q * A(q^4))^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 + 16*u) * (1 + 16*v) * v - u^2. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (1 + 4*u*v)^2. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^2.
Equals A000009 convolved with A098613. - Gary W. Adamson, Mar 24 2011
a(9*n + 2) = a(n) + 4 * A210656(3*n). - Michael Somos, Apr 02 2012
Convolution inverse is A082304. - Michael Somos, May 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082304. - Michael Somos, May 16 2015
Expansion of f(-x^4)^2 / f(-x)^2 = psi(x^2) / phi(-x) = psi(-x)^2 / phi(-x)^2 = psi(x)^2 / phi(-x^2)^2 = psi(x^2)^2 / psi(-x)^2 = chi(x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x)^4) = 1 / (chi(-x)^2 * chi(-x^2)^2) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, May 16 2015
a(n) ~ exp(Pi*sqrt(n)) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 18 2015
G.f.: A(x) = Sum_{n >= 0} x^(n*(n+1)) / Sum_{n = -oo..oo} (-1)^n*x^(n^2). - Peter Bala, Feb 19 2021

A029839 McKay-Thompson series of class 16B for the Monster group.

Original entry on oeis.org

1, 2, -1, -2, 3, 2, -4, -4, 5, 8, -8, -10, 11, 12, -15, -18, 22, 26, -29, -34, 38, 42, -51, -56, 66, 78, -85, -98, 109, 120, -139, -156, 176, 202, -222, -250, 279, 306, -346, -384, 429, 482, -530, -590, 650, 714, -797, -876, 972, 1080, -1180, -1304, 1431, 1562, -1728, -1892, 2078, 2290, -2496
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In [Klein and Fricke 1890], the g.f. A(q)/2 is denoted by mu. On page 613 special values given are mu(i infinity) = infinity, mu(0) = 1, mu(2) = -1 and on page 615 properties given are mu(omega+1) = -i mu(omega), mu(-1/omega) = (mu(omega)+1)/(mu(omega)-1). - Michael Somos, Nov 09 2014

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 + 3*x^4 + 2*x^5 - 4*x^6 - 4*x^7 + 5*x^8 + 8*x^9 + ...
T16B = 1/q + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + ...
		

Crossrefs

Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^b: this sequence (b=1), A029839 (b=2), A029840 (b=3), A029841 (b=4), A029842 (b=5), A029843 (b=6), A029844 (b=7).

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A, m}, If[n < 0, 0, A = 1; m = 1; While[m <= n, m *= 2; A = A /. x -> x^2; A = Sqrt[A + 4*x/A]]; SeriesCoefficient[A, {x, 0, n}]]]; Table[a[n], {n, 0, 58}] (* Jean-François Alcover, Mar 12 2014, after PARI *)
    a[ n_] := SeriesCoefficient[ 2 q^(1/4) EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q], {q, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    QP = QPochhammer; s = QP[q^2]^6/(QP[q]^2*QP[q^4]^4) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)^2))^2, n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A + 4*x/A)); polcoeff(A, n))};

Formula

Expansion of q times normalized Hauptmodul for Gamma(4) in powers of q^4.
Expansion of q^(1/4) * eta(q^2)^6 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [2, -4, 2, 0, ...].
G.f. A(x) satisfies: A(x)^2 = A(x^2) + 4*x / A(x^2). - Michael Somos, Mar 08 2004
G.f.: Product_{k>0} ((1 + x^(2*k-1)) / (1 + x^(2*k)))^2.
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 4 + v^2 - u^2*v. - Michael Somos, May 14 2004
Given g.f. A(x), then B(q) = A(q^4) / (2*q) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Oct 04 2006
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = (u6 + u2)^2 - u1*u2*u3*u6. - Michael Somos, Oct 04 2006
Convolution inverse of A079006.
Expansion of q^(1/4) * 2 / k(q)^(1/2) in powers of Jacobi nome q where k() is the elliptic modulus.
Expansion of q^(1/2) * 2 * (1 + k'(q)) / k(q) in powers of q^2. - Michael Somos, Nov 09 2014
Expansion of phi(x) / psi(x^2) = phi(x)^2 / psi(x)^2 = psi(x)^2 / psi(x^2)^2 = phi(-x^2)^2 / psi(-x)^2 = chi(-x^2)^4 / chi(-x)^2 = chi(x)^2 * chi(-x^2)^2 = chi(x)^4 * chi(-x)^2 = f(x)^2 / f(-x^4)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of continued fraction 1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...)) in powers of x^4. - Michael Somos, Apr 27 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007096.
a(n) = (-1)^n * A082304(n). Convolution square is A029841. - Michael Somos, Jul 05 2014
From Peter Bala, Jan 09 2021: (Start)
A(q) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+1)) / Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)).
A(q) = ( 1 + q/(1 + (q + q^2)/(1 + q^3/(1 + (q^2 + q^4)/(1 + q^5/(1 + ... ))))) )^2. See Agarwal, p. 285.
A(q) = B(q)^2, where B(q) is the g.f. of A029838. (End)
abs(a(n)) ~ exp(Pi*sqrt(n)/2) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

Extensions

Additional comments from Michael Somos, Jul 11 2002

A082303 McKay-Thompson series of class 32e for the Monster group.

Original entry on oeis.org

1, -1, -1, 0, 1, 0, -1, 1, 2, -1, -2, 1, 2, -1, -3, 1, 4, -2, -5, 2, 5, -2, -6, 3, 8, -4, -9, 4, 10, -4, -12, 6, 15, -7, -17, 7, 19, -8, -22, 10, 26, -12, -30, 13, 33, -14, -38, 17, 45, -21, -51, 22, 56, -24, -64, 29, 74, -33, -83, 36, 92, -40, -104, 46, 119, -53, -133, 58
Offset: 0

Views

Author

Michael Somos, Apr 08 2003

Keywords

Comments

Number 4 of the 130 identities listed in Slater 1952. - Michael Somos, Aug 21 2015

Examples

			G.f. = 1 - x - x^2 + x^4 - x^6 + x^7 + 2*x^8 - x^9 - 2*x^10 + x^11 + 2*x^12 + ...
T32e = 1/q - q^7 - q^15 + q^31 - q^47 + q^55 + 2*q^63 - q^71 - 2*q^79 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^4], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] / QPochhammer[ -x^2, x^2], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (16 (1 - m)/m)^(1/8), {q, 0, n - 1/8}]]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 2, n, 2}], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {-x^2}, x^2, x], {x, 0, n}]; (* Michael Somos, Aug 21 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^k^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x^4, x^4, k], {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Aug 21 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^4 + A), n))};
    
  • PARI
    q='q+O('q^66); Vec( eta(q)/eta(q^4) ) \\ Joerg Arndt, Mar 25 2017

Formula

Euler transform of period 4 sequence [ -1, -1, -1, 0, ...].
Expansion of q^(1/8) * eta(q) / eta(q^4) in powers of q.
Given g.f. A(x), then B(q) = (A(q^8) / q)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v + 16) * (u + 16) * u - v^2. - Michael Somos, Jan 09 2005
G.f.: Product_{k>0} (1 - x^k) / (1 - x^(4*k)).
a(n) = (-1)^n * A029838(n).
Convolution square is A082304.
G.f.: 2 - 2/(1+Q(0)), where Q(k)= 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
G.f.: Sum_{k>=0} (-1)^k * q^k^2 * Product_{i=1..k} (1 + x^(2*i - 1)) / (1 - x^(4*i)). - Michael Somos, Aug 21 2015
a(n) = -(1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
abs(a(n)) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 07 2023
Showing 1-3 of 3 results.