cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001935 Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, 50, 64, 82, 105, 132, 166, 208, 258, 320, 395, 484, 592, 722, 876, 1060, 1280, 1539, 1846, 2210, 2636, 3138, 3728, 4416, 5222, 6163, 7256, 8528, 10006, 11716, 13696, 15986, 18624, 21666, 25169, 29190, 33808, 39104, 45164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n where no part appears more than three times.
a(n) satisfies Euler's pentagonal number (A001318) theorem, unless n is in A062717 (see Fink et al.).
Also number of partitions of n in which the least part and the differences between consecutive parts is at most 3. Example: a(5)=6 because we have [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1]. - Emeric Deutsch, Apr 19 2006
Equals A000009 convolved with its aerated variant, = polcoeff A000009 * A000041 * A010054 (with alternate signs). - Gary W. Adamson, Mar 16 2010
Equals left border of triangle A174715. - Gary W. Adamson, Mar 27 2010
The Cayley reference is actually to A083365. - Michael Somos, Feb 24 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A000009 and A035457. - Vaclav Kotesovec, Aug 23 2015
Convolution inverse is A082303. - Michael Somos, Sep 30 2017
The g.f. in the form Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1-x^k) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1+x^k-2*x^k) == Sum_{n >= 0} x^(n*(n+1)/2) (mod 2). It follows that a(n) is odd iff n = k*(k + 1)/2 for some nonnegative integer k. Cf. A333374. - Peter Bala, Jan 08 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 16*x^8 + 22*x^9 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 4*q^33 + 6*q^41 + 9*q^49 + 12*q^57 + 16*q^65 + 22*q^73 + ...
a(5)=6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.2).
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See ped page 303ff.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A010054. - Gary W. Adamson, Mar 16 2010
Cf. A174715. - Gary W. Adamson, Mar 27 2010
Cf. A082303.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a001935 = p a042968_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Sep 02 2012
  • Maple
    g:=product((1+x^j)*(1+x^(2*j)),j=1..50): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..48); # Emeric Deutsch, Apr 19 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 24 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8), {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    CoefficientList[Series[Product[1+x^j+x^(2j)+x^(3j), {j,1,48}], {x,0,48}],x] (* Jean-François Alcover, May 26 2011, after Jon Perry *)
    QP = QPochhammer; CoefficientList[QP[q^4]/QP[q] + O[q]^50, q] (* Jean-François Alcover, Nov 24 2015 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n-j] DivisorSum[j, If[Divisible[#, 4], 0, #]&], {j, 1, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 49}] (* Robert Price, Jul 28 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 8*n + 1) - 1)\2, prod(i=1, k, (1 + x^i) / (x^-i - 1), 1 + x * O(x^n))), n))}; /* Michael Somos, Jun 01 2004 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(1+(-x)^m+x*O(x^n))/m)),n)} \\ Paul D. Hanna, Jul 24 2013
    

Formula

Euler transform of period 4 sequence [ 1, 1, 1, 0, ...].
Expansion of q^(-1/8) * eta(q^4) / eta(q) in powers of q. - Michael Somos, Mar 19 2004
Expansion of psi(-x) / phi(-x) = psi(x) / phi(-x^2) = psi(x^2) / psi(-x) = chi(x) / chi(-x^2)^2 = 1 / (chi(x) * chi(-x)^2) = 1 / (chi(-x) * chi(-x^2)) = f(-x^4) / f(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 08 2011
G.f.: Product(j>=1, 1 + x^j + x^(2*j) + x^(3*j)). - Jon Perry, Mar 30 2004
G.f.: Product_{k>=1} (1+x^k)^(2-k%2). - Jon Perry, May 05 2005
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)) = 1 + Sum_{k>0}(Product_{i=1..k} (x^i + 1) / (x^-i - 1)).
G.f.: Sum_{n>=0} ( x^(n*(n+1)/2) * Product_{k=1..n} (1+x^k)/(1-x^k) ). - Joerg Arndt, Apr 07 2011
G.f.: P(x^4)/P(x) where P(x) = Product_{k>=1} 1-x^k. - Joerg Arndt, Jun 21 2011
A083365(n) = (-1)^n a(n). Convolution square is A001936. a(n) = A098491(n) + A098492(n). a(2*n) = A081055(n). a(2*n + 1) = A081056(n).
G.f.: (1+ 1/G(0))/2, where G(k) = 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 + (-x)^n) ). - Paul D. Hanna, Jul 24 2013
a(n) ~ Pi * BesselI(1, sqrt(8*n + 1)*Pi/4) / (2*sqrt(8*n + 1)) ~ exp(Pi*sqrt(n/2)) / (4 * (2*n)^(3/4)) * (1 + (Pi/(16*sqrt(2)) - 3/(4*Pi*sqrt(2))) / sqrt(n) + (Pi^2/1024 - 15/(64*Pi^2) - 15/128) / n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082303. - Michael Somos, Sep 30 2017

Extensions

More terms from James Sellers

A029838 Expansion of square root of q times normalized Hauptmodul for Gamma(4) in powers of q^8.

Original entry on oeis.org

1, 1, -1, 0, 1, 0, -1, -1, 2, 1, -2, -1, 2, 1, -3, -1, 4, 2, -5, -2, 5, 2, -6, -3, 8, 4, -9, -4, 10, 4, -12, -6, 15, 7, -17, -7, 19, 8, -22, -10, 26, 12, -30, -13, 33, 14, -38, -17, 45, 21, -51, -22, 56, 24, -64, -29, 74, 33, -83, -36, 92, 40, -104, -46, 119, 53, -133, -58, 147, 63, -165, -73, 187, 83, -208, -90, 229, 99, -256
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^2 + x^4 - x^6 - x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + 2*x^12 + ...
G.f. = 1/q + q^7 - q^15 + q^31 - q^47 - q^55 + 2*q^63 + q^71 - 2*q^79 - q^87 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 221 Entry 1(i).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2] QPochhammer[ q^2, q^4], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, -q] / QPochhammer[ q^4, q^4], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ q^(1/8) EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    (QPochhammer[-x, x^2, 1/2] + O[x]^100)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 + x^k)^(-(-1)^k), 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1 + if( j>1, x^(j-1))))); polcoeff(A[1,1] / A[2,1] + x * O(x^n), n))}; /* Michael Somos, Mar 02 2006 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = subst(A, x, x^2); A = sqrt((A2 + 2  * x / A2) / A)); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A) / eta(x^4 + A)^2, n))};

Formula

Expansion of f(x) / f(-x^4) = phi(x) / psi(x) = psi(x) / psi(x^2) = phi(-x^2) / psi(-x) = chi(x) * chi(-x^2) = chi^2(x) * chi(-x) = chi^2(-x^2) / chi(-x) = (phi(x) / psi(x^2))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^3 / (eta(q) * eta(q^4)^2) in powers of q.
Euler transform of period 4 sequence [ 1, -2, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 4 + v^4 - u^4*v^2. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = u^4 - v^4 - 4*u*v + u^3*v^3. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 2 + w^2 - u^2*v*w. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^2 + u6^2 - u1*u2*u3*u6. - Michael Somos, Mar 02 2006
G.f. A(x) satisfies A(x)^2 = (A(x^4) + 2*x / A(x^4)) / A(x^2). - Michael Somos, Mar 08 2004
G.f. A(x) satisfies A(x) = (A(x^2)^2+4*x/A(x^2)^2)^(1/4). - Joerg Arndt, Aug 06 2011
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / (1 + x^(2*k)) = (Sum_{k>0} x^((k^2 - k)/2)) / (Sum_{k>0} x^(k^2 - k)).
G.f.: 1 + x / (1 + x + x^2 / (1 + x^2 + x^3 / (1 + x^3 + ...))).
A082303(n) = (-1)^n a(n). Convolution square is A029839. Convolution inverse is A083365.
G.f.: 2 - 2/(1+Q(0)), where Q(k)= 1 + x^(k+1) + x^(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109506(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 14 2017
abs(a(n)) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

A316384 Number of ways to stack n triangles symmetrically in a valley (pointing upwards or downwards depending on row parity).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 5, 2, 5, 2, 6, 3, 8, 4, 9, 4, 10, 4, 12, 6, 15, 7, 17, 7, 19, 8, 22, 10, 26, 12, 30, 13, 33, 14, 38, 17, 45, 21, 51, 22, 56, 24, 64, 29, 74, 33, 83, 36, 92, 40, 104, 46, 119, 53, 133, 58, 147, 63, 165, 73, 187, 83, 208, 90
Offset: 0

Views

Author

Seiichi Manyama, Jun 30 2018

Keywords

Comments

*
/ \
*-*-*-*-*
\ / \ /
*---*
\ /
*
Such a way to stack is not allowed.
From George Beck, Jul 28 2023: (Start)
Equivalently, a(n) is the number of partitions of n such that the 2-modular Ferrers diagram is symmetric.
The first example for n = 16 below corresponds to the partition 9 + 2 + 2 + 2 + 1 with 2-modular Ferrers diagram:
2 2 2 2 1
2
2
2
1
(End)

Examples

			a(16) = 4.
                                 *   *
                                / \ / \
     *---*---*---*---*         *---*---*
      \ / \ / \ / \ /         / \ / \ / \
       *---*---*---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
   *---*           *---*     *           *
    \ / \         / \ /     / \         / \
     *---*       *---*     *---*   *   *---*
      \ / \     / \ /       \ / \ / \ / \ /
       *---*   *---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
a(17) = 2.
           *---*         *---*           *---*
          / \ / \         \ / \         / \ /
         *---*---*         *---*       *---*
        / \ / \ / \         \ / \     / \ /
       *---*---*---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
		

Crossrefs

Cf. A000700 (number of symmetric Ferrers graphs with n nodes), A006950 (number of ways to stack n triangles in a valley), A029838, A036015, A036016, A082303.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[(QPochhammer[x^6, x^16]*QPochhammer[x^10, x^16] + x*QPochhammer[x^2, x^16]*QPochhammer[x^14, x^16])/(QPochhammer[x^2, x^4] * QPochhammer[x^8, x^16]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 08 2023 *)
  • Ruby
    def s(k, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == 0}
      s
    end
    def A(ary, n)
      a_ary = [1]
      a = [0] + (1..n).map{|i| ary.inject(0){|s, j| s + j[1] * s(j[0], i)}}
      (1..n).each{|i| a_ary << (1..i).inject(0){|s, j| s - a[j] * a_ary[-j]} / i}
      a_ary
    end
    def A316384(n)
      A([[1, 1], [4, -1]], n).map{|i| i.abs}
    end
    p A316384(100)

Formula

a(2n+1) = A036015(n).
a(2n ) = A036016(n).
a(n) = |A029838(n)| = |A082303(n)|.
Euler transform of period 16 sequence [1, 0, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 0, 1, 0, ...].
a(n) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 08 2023
G.f.: Product_{k>=1} 1/((1 - x^(16*k-2))*(1 - x^(16*k-8))*(1 - x^(16*k-14))) + x*Product_{k>=1} 1/((1 - x^(16*k-6))*(1 - x^(16*k-8))*(1 - x^(16*k-10))). - Vaclav Kotesovec, Feb 08 2023

A258741 Expansion of f(x^3, x^5) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 1, -1, 2, -2, 2, -3, 4, -5, 5, -6, 8, -9, 10, -12, 15, -17, 19, -22, 26, -30, 33, -38, 45, -51, 56, -64, 74, -83, 92, -104, 119, -133, 147, -165, 187, -208, 229, -256, 288, -319, 351, -390, 435, -481, 528, -584, 649, -715, 783, -863, 954, -1047, 1145
Offset: 0

Views

Author

Michael Somos, Nov 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^2 - x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 4*x^8 - 5*x^9 + ...
G.f. = 1/q - q^15 + q^31 - q^47 + 2*q^63 - 2*q^79 + 2*q^95 - 3*q^111 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 16th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] / (QPochhammer[ -x, x^8] QPochhammer[ -x^7, x^8]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / Product[ (1 + x^(8 k + 1)) (1 - x^(8 k + 4)) (1 + x^(8 k + 7)), {k, 0, Ceiling[ n/8]}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{1, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, 0, -1, 1, 0}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, 0, -1, 1][k%16 + 1]), n))};

Formula

Expansion of f(x^4, x^12) / f(x, x^7) where f(, ) is Ramanujan's general theta function.
Euler transform of period 16 sequence [ -1, 1, 0, 1, 0, 0, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, ...].
G.f.: 1 / (Product_{k>=0} (1 + x^(8*k + 1)) * (1 - x^(8*k + 4)) * (1 + x^(8*k + 7))).
G.f.: (1 + x^4 + x^12 + x^24 + x^40 + ...) / (1 + x + x^7 + x^10 + x^22 + ...). [Ramanujan]
G.f.: 1 - x * (1 - x) / (1 - x^2) + x^4 * (1 - x) * (1 - x^3) / ((1 - x^2) * (1 - x^4)) - ... [Ramanujan]
a(n) = (-1)^n * A036016(n) = A029838(2*n) = A082303(2*n).
Convolution product of A106507 and A214264.

A259774 Expansion of f(x, x^7) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -3, 4, -4, 4, -6, 7, -7, 8, -10, 12, -13, 14, -17, 21, -22, 24, -29, 33, -36, 40, -46, 53, -58, 63, -73, 83, -90, 99, -113, 127, -138, 152, -171, 191, -209, 228, -255, 285, -309, 338, -377, 416, -453, 495, -547, 603, -656
Offset: 0

Views

Author

Michael Somos, Nov 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 2*x^10 - 3*x^11 + ...
G.f. = q^7 - q^55 + q^71 - q^87 + q^103 - q^119 + 2*q^135 - 2*q^151 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 15th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] / (QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / Product[ (1 + x^(8 k + 3)) (1 - x^(8 k + 4)) (1 + x^(8 k + 5)), {k, 0, Ceiling[ n/8]}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0][k%16 + 1]), n))};

Formula

Expansion of f(x^4, x^12) / f(x^3, x^5) where f(, ) is Ramanujan's general theta function.
Euler transform of period 16 sequence [ 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, ...].
G.f.: (1 + x^4 + x^12 + x^24 + x^40 + ...) / (1 + x^3 + x^5 + x^14 + x^18 + ...). [Ramanujan]
G.f.: 1 - x^3 * (1 - x) / (1 - x^2) + x^8 * (1 - x) * (1 - x^3) / ((1 - x^2) * (1 - x^4)) - ... [Ramanujan]
a(n) = (-1)^n * A036015(n) = A029838(2*n + 1) = - A082303(2*n + 1).
Convolution product of A106507 and A214263.

A318027 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(4*k))).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 29, 39, 57, 77, 112, 148, 205, 271, 372, 484, 647, 838, 1110, 1423, 1852, 2361, 3051, 3857, 4922, 6191, 7849, 9805, 12319, 15314, 19131, 23649, 29333, 36099, 44556, 54568, 66963, 81683, 99803, 121229, 147413, 178411, 216111, 260590, 314365, 377819, 454229
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Convolution of A000041 and A035444.
Convolution of A000712 and A082303.
Convolution inverse of A107034.
Number of partitions of n if there are 2 kinds of parts that are multiples of 4.

Examples

			a(5) = 8 because we have [5], [4, 1], [4', 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(4*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(4 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^4]), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + 2*x^(3 k))/(k (1 - x^(4 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[PartitionsP[k] PartitionsP[n - 4 k], {k, 0, n/4}], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + 2*x^(3*k))/(k*(1 - x^(4*k)))).
a(n) ~ 5^(3/4) * exp(sqrt(5*n/6)*Pi) / (2^(13/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018

A374080 Expansion of Product_{k>=1} (1 - x^(4*k-1)) * (1 - x^(4*k)).

Original entry on oeis.org

1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, -1, 0, 1, 0, -1, -1, 0, 0, -1, -1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, -1, -1, 1, 1, 0, 0, 1, 2, -1, -1, 0, 1, 0, -2, 0, 2, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -2, 0, 1, -1, -2, 1, 2, 0, -2, -1, 2, 0, -2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(4 k - 1)) (1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[DivisorSum[k, # &, Or[Mod[#, 4] == 0, Mod[#, 4] == 3] &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

A374081 Expansion of Product_{k>=1} (1 - x^(4*k-3)) * (1 - x^(4*k)).

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 2, -1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 1, 1, 0, -2, 1, 1, -2, 0, 2, 0, -1, 0, 1, 0, -1, 0, 2, -1, -2, 1, 1, -1, -1, 1, 2, -2, -1, 2, 0, -2, 0, 2, 0, -2, 0, 2, -1, -2, 1, 2, -1, -2, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(4 k - 3)) (1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[DivisorSum[k, # &, Or[Mod[#, 4] == 0, Mod[#, 4] == 1] &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

A092924 Expansion of a Schwarzian ({f_{32|8}, tau} / (4*Pi)^2) in powers of q^8.

Original entry on oeis.org

1, -1008, 8304, -28224, 66672, -127008, 232512, -346752, 533616, -763056, 1046304, -1342656, 1866816, -2215584, 2856576, -3556224, 4269168, -4953312, 6286128, -6914880, 8400672, -9709056, 11060928, -12265344, 14941248, -15877008, 18252192, -20603520, 22935168, -24585120
Offset: 0

Views

Author

John McKay (mckay(AT)cs.concordia.ca), Apr 18 2004

Keywords

Comments

The q-series f_{32|8} is the g.f. for A082303. This is given on page 274 of McKay and Sebbar along with equation (8.1) which gives an expression for the g.f. A(q) of this sequence. - Michael Somos, Aug 15 2014

Examples

			G.f. = 1 - 1008*x + 8304*x^2 - 28224*x^3 + 66672*x^4 - 127008*x^5 + 232512*x^6 + ...
G.f. = 1 - 1008*q^8 + 8304*q^16 - 28224*q^24 + 66672*q^32 - 127008*q^40 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; E4[0] := 1; E4[q_]:= 1 +240*Sum[k^3* q^k/(1 - q^k), {k, 1, 150}]; CoefficientList[Series[(21*E4[-q] - 16*E4[q^2])/5, {q, 0, 100}], q] (* G. C. Greubel, Jul 25 2018 *)
  • Sage
    A = ModularForms( Gamma0(8), 4, prec=32) . basis(); A[1] - 1008*A[2] + 8304*A[3] + 66672*A[4]; # Michael Somos, Aug 15 2014

Formula

Expansion of (21 * E_4(-q) - 16 * E_4(q^2)) / 5 in powers of q. [McKay and Sebbar, equation (8.1)] - Michael Somos, Aug 15 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 15 2014

Extensions

More terms from Michael Somos, Aug 15 2014

A286656 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)/(1 - x^(k*j)).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -1, 0, 0, 1, -1, -1, -1, 0, 1, -1, -1, 1, 1, 0, 1, -1, -1, 0, -1, -1, 0, 1, -1, -1, 0, 1, 0, 1, 0, 1, -1, -1, 0, 0, 0, 2, -1, 0, 1, -1, -1, 0, 0, 2, -1, -1, 2, 0, 1, -1, -1, 0, 0, 1, -1, 1, -1, -2, 0, 1, -1, -1, 0, 0, 1, 1, 0, 2, 3, 2, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, May 14 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -1, -1, -1, ...
   0,  0, -1, -1, -1, ...
   0, -1,  1,  0,  0, ...
   0,  1, -1,  1,  0, ...
		

Crossrefs

Columns k=1-5 give: A000007, A081362, A137569, A082303, A145466.
Main diagonal gives A010815.
Cf. A286653.

Formula

G.f. of column k: Product_{j>=1} (1 - x^j)/(1 - x^(k*j)).
Showing 1-10 of 11 results. Next