cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082550 Number of sets of distinct positive integers whose arithmetic mean is an integer, the largest integer of the set being n.

Original entry on oeis.org

1, 1, 3, 3, 7, 11, 19, 31, 59, 103, 187, 343, 631, 1171, 2191, 4095, 7711, 14571, 27595, 52431, 99879, 190651, 364723, 699071, 1342183, 2581111, 4971067, 9586983, 18512791, 35791471, 69273667, 134217727, 260301175, 505290271, 981706831, 1908874583, 3714566311
Offset: 1

Views

Author

Naohiro Nomoto, May 03 2003

Keywords

Comments

Equivalently, number of nonempty subsets of [n] the sum of whose elements is divisible by n. - Dimitri Papadopoulos, Jan 18 2016

Examples

			a(5) = 7: the seven sets are (1+2+3+4+5)/5 = 3, 5/1 = 5, (1+5)/2 = 3, (1+3+5)/3 = 3, (3+5)/2 = 4, (3+4+5)/3 = 4, (1+2+4+5)/4 = 3.
		

Crossrefs

Row sums of A267632.

Programs

  • Mathematica
    Table[Length[Select[Select[Subsets[Range[n]],Max[#]==n&], IntegerQ[ Mean[ #]]&]], {n,22}] (* Harvey P. Dale, Jul 23 2011 *)
    Table[Total[Table[Length[Select[Select[Subsets[Range[n]], Length[#] == k &],IntegerQ[Total[#]/n] &]], {k, n}]], {n, 10}] (* Dimitri Papadopoulos, Jan 18 2016 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n - 1; \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import totient, divisors
    def A082550(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1)//n-1 # Chai Wah Wu, Feb 22 2023

Formula

a(n) = A063776(n) - 1.
a(n) = A051293(n+1) - A051293(n). - Reinhard Zumkeller, Feb 19 2006
a(n) = A008965(n) for odd n. - Dimitri Papadopoulos, Jan 18 2016
G.f.: -x/(1 - x) - Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A309402(n,n). - Alois P. Heinz, Jul 28 2019

Extensions

a(22) from Harvey P. Dale, Jul 23 2011
a(23)-a(32) from Dimitri Papadopoulos, Jan 18 2016