cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082574 a(1)=1, a(n) = ceiling(r(3)*a(n-1)) where r(3) = (1/2)*(3 + sqrt(13)) is the positive root of X^2 = 3*X + 1.

Original entry on oeis.org

1, 4, 14, 47, 156, 516, 1705, 5632, 18602, 61439, 202920, 670200, 2213521, 7310764, 24145814, 79748207, 263390436, 869919516, 2873148985, 9489366472, 31341248402, 103513111679, 341880583440, 1129154862000, 3729345169441, 12317190370324
Offset: 1

Views

Author

Benoit Cloitre, May 06 2003

Keywords

Comments

More generally the sequence a(1)=1, a(n) = ceiling(r(z)*a(n-1)) where r(z) = (1/2)*(z + sqrt(z^2 + 4)) is the positive root of X^2 = z*X + 1 satisfies the linear recurrence: for n > 3, a(n) = (z+1)*a(n-1) - (z-1)*a(n-2) - a(n-3) and the closed-form formula: a(n) = floor(t(z)*r(z)^n) where t(z) = (1/(2*z))*(1+(z+2)/sqrt(z^2+4)) is the positive root of z*(z^2 + 4)*X^2 = (z^2 + 4)*X + 1.

Crossrefs

Programs

  • Magma
    I:=[1,4,14]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 12 2017
    
  • Maple
    a:=n->sum(fibonacci(i,3), i=0..n): seq(a(n), n=1..30); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    LinearRecurrence[{4, -2, -1}, {1, 4, 14}, 30] (* Vincenzo Librandi, Sep 12 2017 *)
    Table[Sum[Fibonacci[k, 3], {k,0,n}], {n,1,30}] (* G. C. Greubel, May 31 2019 *)
  • PARI
    Vec(1/((1-x)*(1-3*x-x^2)) + O(x^30)) \\ Michel Marcus, Sep 12 2017
    
  • Sage
    (1/((1-x)*(1-3*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 31 2019

Formula

a(1)=1, a(2)=4, a(3)=14, a(n) = 4*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = floor(t(3)*r(3)^n) where t(3) = (1/6)*(1 + 5/sqrt(13)) is the positive root of 39*X^2 = 13*X + 1.
G.f.: 1/((1-x)*(1-3*x-x^2)). Partial sums of A006190. - Paul Barry, Jul 10 2004