A082574 a(1)=1, a(n) = ceiling(r(3)*a(n-1)) where r(3) = (1/2)*(3 + sqrt(13)) is the positive root of X^2 = 3*X + 1.
1, 4, 14, 47, 156, 516, 1705, 5632, 18602, 61439, 202920, 670200, 2213521, 7310764, 24145814, 79748207, 263390436, 869919516, 2873148985, 9489366472, 31341248402, 103513111679, 341880583440, 1129154862000, 3729345169441, 12317190370324
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Ignas Gasparavičius, Andrius Grigutis, and Juozas Petkelis, Picturesque convolution-like recurrences and partial sums' generation, arXiv:2507.23619 [math.NT], 2025. See p. 24.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-1).
Programs
-
Magma
I:=[1,4,14]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 12 2017
-
Maple
a:=n->sum(fibonacci(i,3), i=0..n): seq(a(n), n=1..30); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
LinearRecurrence[{4, -2, -1}, {1, 4, 14}, 30] (* Vincenzo Librandi, Sep 12 2017 *) Table[Sum[Fibonacci[k, 3], {k,0,n}], {n,1,30}] (* G. C. Greubel, May 31 2019 *)
-
PARI
Vec(1/((1-x)*(1-3*x-x^2)) + O(x^30)) \\ Michel Marcus, Sep 12 2017
-
Sage
(1/((1-x)*(1-3*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 31 2019
Formula
a(1)=1, a(2)=4, a(3)=14, a(n) = 4*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = floor(t(3)*r(3)^n) where t(3) = (1/6)*(1 + 5/sqrt(13)) is the positive root of 39*X^2 = 13*X + 1.
G.f.: 1/((1-x)*(1-3*x-x^2)). Partial sums of A006190. - Paul Barry, Jul 10 2004
Comments