cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A348955 a(1) = 1; a(n) = Sum_{d|n, d <= sqrt(n)} a(d)^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 6, 1, 3, 1, 6, 2, 2, 1, 7, 2, 2, 2, 6, 1, 4, 1, 6, 2, 2, 2, 11, 1, 2, 2, 7, 1, 7, 1, 6, 3, 2, 1, 11, 2, 3, 2, 6, 1, 7, 2, 7, 2, 2, 1, 12, 1, 2, 3, 10, 2, 7, 1, 6, 2, 4, 1, 15, 1, 2, 3, 6, 2, 7, 1, 11, 6, 2, 1, 12, 2, 2, 2, 10, 1, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Cf. A008578 (positions of 1's), A067868, A068108, A082588, A337135, A348956.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSum[n, a[#]^2 &, # <= Sqrt[n] &]; Table[a[n], {n, 90}]
  • PARI
    A348955(n) = if(1==n,n,sumdiv(n,d,if((d*d)<=n,A348955(d)^2,0))); \\ Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} a(k)^2 * x^(k^2) / (1 - x^k).
a(4^n) = A067868(n).

A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Comments

a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, Apr 24 2021

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(d)^2, d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..65);  # Alois P. Heinz, Apr 17 2021
  • Mathematica
    a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}]
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (dMichel Marcus, Apr 18 2021
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021
    

Formula

G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n).
a(p^k) = A007018(k) for p prime.
From Bernard Schott, Apr 24 2021: (Start)
a(A006881(n)) = 10 for signature [1, 1].
a(A054753(n)) = 146 for signature [2, 1].
a(A007304(n)) = 314 for signature [1, 1, 1].
a(A065036(n)) = 23226 for signature [3, 1].
a(A085986(n)) = 42814 for signature [2, 2].
a(A085987(n)) = 141578 for signature [2, 1, 1]. (End)

A333120 a(1) = 1, a(n+1) = Sum_{d|n} a(d)^2.

Original entry on oeis.org

1, 1, 2, 5, 27, 730, 532906, 283988804837, 80649641272747674596596, 6504364637422885153991868441922618991334787221, 42306759336557340251452848811862268800945638555088445693345741249091605099189510505344903572
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[d]^2, {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 11}]

Formula

a(n) ~ c^(2^n), where c = 1.10850959824748299278192262396861284785509520261602375885447280659977154... - Vaclav Kotesovec, Mar 08 2020

A332778 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(n/d) * a(d)^2.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 6, 15, 14, 24, 10, 96, 12, 48, 56, 255, 16, 344, 18, 656, 108, 120, 22, 9840, 84, 168, 434, 2448, 28, 4608, 30, 65535, 260, 288, 264, 137376, 36, 360, 360, 432512, 40, 16776, 42, 14720, 7208, 528, 46, 96974880, 258, 9464, 608, 28656, 52, 425864, 600
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[n/d] a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    a[1] = 1; a[n_] := Sum[a[GCD[n, k]]^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 55}]

Formula

a(1) = 1; a(n) = Sum_{k=1..n-1} a(gcd(n, k))^2.
Showing 1-4 of 4 results.