cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A171376 Numbers k such that 1 + 3*10^k + 100^k is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 14, 16, 92, 133, 153, 378, 448, 785, 1488, 1915, 2297, 3286, 4755, 5825, 7820, 34442, 34941
Offset: 1

Views

Author

Jason Earls, Dec 07 2009

Keywords

Comments

All primes were certified with WinPFGW.
a(24) > 35000. - Serge Batalov, Dec 20 2015

Examples

			4 is in the sequence because 10^8 + 3 * 10^4 + 1 = 100030001 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..4*10^2] | IsPrime(1+3*10^n+100^n)]; // Vincenzo Librandi, Dec 22 2015
  • Mathematica
    Select[Range@ 1000, PrimeQ[1 + 3 10^# + 100^#] &] (* Michael De Vlieger, Dec 18 2015 *)
  • PARI
    \\sieve for the candidates:
    {
    lim=10^9; ns=6*10^5; pp=10^7; s=vectorsmall(ns);
    forprime(p=11,lim,if(kronecker(5,p)==1,o=znorder(t=Mod(10,p));
      q=sqrt(Mod(5,p));r=znlog((q-3)/2,t,o);
      if(r,forstep(n=r,ns,o,s[n]=1);forstep(n=o-r,ns,o,s[n]=1)));
      if(p>pp,pp+=10000000;print1(p" ")));
    for(n=1,ns,if(!s[n],write("sieve_out_10301NGm1.txt", n)));
    }
    \\quick initial check for small sequence members
    for(n=0,2297,if(ispseudoprime((10^n+3)*10^n+1),print1(n", ")))
    \\ Serge Batalov, Dec 17 2015
    

Formula

a(n) = (A100028(n-1) - 1)/2 for n>1. - Jeppe Stig Nielsen, Oct 06 2024

Extensions

a(21)-a(23) from Serge Batalov, Dec 20 2015

A082620 a(1) = 1, then the smallest palindromic prime obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

1, 11, 101, 10301, 1003001, 100030001, 10003630001, 1000136310001, 100010363010001, 10001036363010001, 1000103639363010001, 100010356393653010001, 10001033563936533010001, 1000103305639365033010001, 100010313056393650313010001, 10001031305636963650313010001
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Crossrefs

Extensions

Corrected by R. J. Mathar, Oct 01 2006
a(7)-a(10) from Felix Fröhlich, Oct 16 2014
a(11)-a(12) from Felix Fröhlich, Nov 26 2014
a(13)-a(16) from Felix Fröhlich, Apr 02 2015
Terms a(8)-a(16) corrected by Giovanni Resta, Sep 20 2019

A082621 a(1) = 2, then the smallest palindromic prime obtained by inserting digits anywhere in a(n-1) (including at the ends).

Original entry on oeis.org

2, 727, 37273, 3072703, 307323703, 30073237003, 3006732376003, 300067323760003, 30000673237600003, 3000067382837600003, 300006738242837600003, 30000673820402837600003, 3000063738204028373600003, 300006373821040128373600003, 30000635738210401283753600003
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Crossrefs

Extensions

Corrected by R. J. Mathar, Oct 01 2006
More terms from Giovanni Resta, Sep 20 2019

A082623 a(1) = 5, a(n) = smallest palindromic prime obtained by inserting two digits anywhere in a(n-1).

Original entry on oeis.org

5, 151, 10501, 1035301, 103515301, 10325152301, 1013251523101, 101325181523101, 10132512821523101, 1013251428241523101, 101322514282415223101, 10132245142824154223101, 1013224514281824154223101, 101322451402818204154223101, 10132245014028182041054223101
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Comments

a(78) is the last term, as none of the candidates for a(79) is prime. - Giovanni Resta, Sep 20 2019

Crossrefs

Programs

  • Maple
    cp:= proc(x,y) if x[1] < y[1] then true
               elif x[1] > y[1] then false
               elif nops(x)=1 then true
               else procname(x[2..-1],y[2..-1])
               fi
    end proc: A[1]:= 5: L:= [5]:
    for n from 2 to 15 do
      nL:= nops(L);
      Lp:= sort([seq(seq([op(L[1..i]), x, op(L[i+1..-1])], x=`if`(i=0, 1..9, 0..9)), i=0..nL)], cp);
      cands:= map(t -> add(t[i]*(10^(i-1)+10^(2*nL+1-i)), i=1..nL)+t[nL+1]*10^(nL), Lp);
      found:= false;
      for i from 1 to nops(cands) do
        if isprime(cands[i]) then
          A[n]:= cands[i];
          L:= Lp[i];
          found:= true;
          break
        fi
      od;
      if not found then break fi
    od:
    seq(A[i],i=1..15); # Robert Israel, Jan 03 2017, corrected Sep 20 2019

Extensions

Terms after a(4) corrected by Giovanni Resta, Sep 20 2019

A082624 a(1) = 7, a(n) = smallest palindromic prime obtained by inserting digit anywhere in a(n-1).

Original entry on oeis.org

7, 373, 30703, 3007003, 302070203, 30207570203, 3062075702603, 306020757020603, 30602075057020603, 3060320750570230603, 300603207505702306003, 30060320275057202306003, 3006032021750571202306003, 300603202127505721202306003, 30046032021275057212023064003
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Crossrefs

Extensions

More terms from Giovanni Resta, Sep 20 2019
Showing 1-5 of 5 results.