A100028
Values of n for which the decimal number 10...030...01 is an n-digit prime.
Original entry on oeis.org
3, 5, 7, 9, 23, 29, 33, 185, 267, 307, 757, 897, 1571, 2977, 3831, 4595, 6573, 9511, 11651, 15641, 68885, 69883
Offset: 1
Harvey Dubner (harvey(AT)dubner.com), Nov 20 2004
The corresponding primes are 131, 10301, 1003001, 100030001, 10000000000300000000001, etc.
-
IntegerLength/@Select[Table[FromDigits[Join[PadRight[{1},n,0],{3},PadLeft[ {1},n,0]]],{n,35000}],PrimeQ] (* Harvey P. Dale, Dec 20 2019 *)
A070247
Palindromic primes with digit sum 5.
Original entry on oeis.org
5, 131, 10301, 1003001, 100030001, 100111001, 101000010000101, 10000010101000001, 101000000010000000101, 110000000010000000011, 10000000000300000000001, 10000100000100000100001, 100000100000010000001000001, 10000000000000300000000000001, 10000000001000100010000000001
Offset: 1
-
Do[p = Join[ IntegerDigits[n, 4], Reverse[ Drop[ IntegerDigits[n, 4], -1]]]; q = Plus @@ p; If[q == 5 && PrimeQ[ FromDigits[p]] && q == 5, Print[ FromDigits[p]]], {n, 1, 4 10^8}] (* this coding will not pick up the first entry *)
-
for(i=0,50,for(j=0,i,p=10^(2*i)+10^(i+j)+10^i+10^(i-j)+1;isprime(p)&&print1(p,", "))) \\ Jeppe Stig Nielsen, Aug 30 2025
A171411
Numbers k such that 1 + 5*10^k + 100^k is prime.
Original entry on oeis.org
0, 1, 2, 4, 5, 8, 27, 165, 230, 237, 369, 485, 628, 875, 964, 1419, 4083
Offset: 1
A171459
Numbers k such that 1 + 6*10^k + 100^k is prime.
Original entry on oeis.org
2, 4, 24, 32, 34, 72, 75, 164, 532, 1335, 4704, 29762
Offset: 1
A171514
Numbers k such that 1 + 8*10^k + 100^k is prime.
Original entry on oeis.org
1, 3, 6, 9, 13, 17, 29, 63, 90, 531, 14286, 30617, 37815
Offset: 1
A171554
Numbers k such that 1 + 9*10^k + 100^k is prime.
Original entry on oeis.org
0, 1, 5, 71, 311
Offset: 1
A261455
Numbers n such that 1+131*10^(n-1)+100^n is prime.
Original entry on oeis.org
2, 4, 13, 30, 73, 82, 120, 168, 227, 422, 433, 451, 607, 612, 798, 1527, 6958
Offset: 1
For n=2, 11311 is prime.
For n=3, 1013101 is not prime.
For n=4, 100131001 is prime.
Showing 1-7 of 7 results.
Comments