cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A088774 a(n) = A082779(n+1)/A082779(n).

Original entry on oeis.org

11, 11, 101, 10001, 99775226, 10000000000000001
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Comments

a(n)<=10^A055642(A082779(n))+1. If A082779(n) > 10 and the last digit of A082779(n) <= 4, then a(n)<=10^(A055642(A082779(n))-1)+1. - Chai Wah Wu, Mar 06 2021

Crossrefs

Extensions

Corrected a(5) and removed possibly erroneous a(6) by Chai Wah Wu, Mar 06 2021
a(6) from Max Alekseyev, Nov 24 2024

A082776 a(1) = 1, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

1, 11, 121, 12221, 12233221, 122344443221, 15223441414432251, 15223441429655692414432251
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Comments

a(n)<=(10^A055642(a(n-1))+1)*a(n-1). If a(n-1) > 10 and the last digit of a(n-1) <= 4, then a(n)<=(10^(A055642(a(n-1))-1)+1)*a(n-1). - Chai Wah Wu, Mar 06 2021

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
a(8) from Sean A. Irvine, Apr 19 2010

A082777 a(1) = 2, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

2, 22, 242, 24442, 24466442, 243465564342, 2434655886885564342, 2434655886887998997886885564342
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
a(7) from Sean A. Irvine, Apr 19 2010
a(8) from Max Alekseyev, Nov 24 2024

A082778 a(1) = 3; for n>1, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

3, 33, 363, 36663, 36699663, 36699699699663, 2363336999698969996333632
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
Terms a(7) onward from Ray G. Opao, Sep 09 2004
a(7) corrected, incorrect terms a(8) onward removed by Max Alekseyev, Nov 24 2024

A082780 a(1) = 5, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

5, 55, 5005, 505505, 5005005005, 50055055055005, 50005050055005050005, 5000005005005005005005000005, 50000050055050055055055005055005000005
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
a(8)-a(9) from Sean A. Irvine, Apr 19 2010

A082782 a(1) = 7, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

7, 77, 1771, 178871, 1788888871, 178888888888888871, 17111188118888288288881188111171
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
a(6) from Sean A. Irvine, Apr 19 2010
a(7) from Max Alekseyev, Nov 24 2024

A082781 a(1) = 6, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

6, 66, 6006, 606606, 6006006006, 60066066066006, 60006060066006060006, 6000006006006006006006000006, 60000060066060066066066006066006000006
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Crossrefs

Extensions

Corrected by Ray Chandler, Oct 13 2003
a(8)-a(9) from Sean A. Irvine, Apr 19 2010

A082783 a(1) = 8, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

8, 88, 8008, 808808, 8008008008, 80088088088008, 80008080088008080008, 8000008008008008008008000008, 80000080088080088088088008088008000008
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2003

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Oct 13 2003
a(8)-a(9) from Sean A. Irvine, Apr 19 2010

A088780 a(1) = 9, a(n) = smallest palindromic multiple of a(n-1) obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

9, 99, 9009, 909909, 9009009009, 90099099099009, 90009090099009090009, 9000009009009009009009000009, 90000090099090099099099009099009000009
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Crossrefs

Extensions

a(8) from David Consiglio, Jr., Sep 30 2022
a(9) from Max Alekseyev, Nov 24 2024

A342346 a(1) = 4, a(n) = smallest palindromic nontrivial multiple of a(n-1) containing all decimal digits of a(n-1).

Original entry on oeis.org

4, 44, 484, 48884, 8408048, 84088888048, 8408888888888888048, 84088888888888888888888888888888048
Offset: 1

Views

Author

Chai Wah Wu, Mar 08 2021

Keywords

Comments

Differs from A082779 at a(5).
a(n) <= (10^A055642(a(n-1))+1)*a(n-1).
If a(n-1) > 10 and the last digit of a(n-1) <= 4, then a(n) <= (10^(A055642(a(n-1))-1)+1)*a(n-1).
For n = 5..8, we have a(n) = 7568 * A002275(2^(n-3)), and it follows that a(9) <= 7568 * A002275(64). Conjecture: for all n >= 5, a(n) = 7568 * A002275(2^(n-3)). Note that 7568 is a term of A370052 and A370053. - Max Alekseyev, Feb 08 2024

Examples

			a(3) = 484 is a palindromic multiple of a(2) = 44 and contains two '4', all the digits of a(2).
		

Crossrefs

Extensions

a(8) from Max Alekseyev, Feb 07 2024
Showing 1-10 of 10 results.