A082897 Perfect totient numbers.
3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147, 208191, 441027, 531441, 1594323, 4190263, 4782969, 9056583, 14348907, 43046721
Offset: 1
Keywords
Examples
327 is a perfect totient number because 327 = 216 + 72 + 24 + 8 + 4 + 2 + 1. Note that 216 = phi(327), 72 = phi(216), 24 = phi(72) and so on.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B41, pp. 147-150.
- L. Pérez-Cacho, Sobre la suma de indicadores de órdenes sucesivos (in Spanish), Revista Matematica Hispano-Americana, Vol.5, No. 3 (1939), pp. 45-50.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, pp. 240-242.
- D. L. Silverman, Problem 1040, J. Recr. Math., Vol. 14 (1982); Solution by R. I. Hess, ibid., Vol. 15 (1983).
Links
- Jud McCranie, Table of n, a(n) for n = 1..64 (first 51 terms from Robert G. Wilson v)
- Jovele G. Belmonte, On perfect totient numbers, Masteral Thesis, De La Salle University, 2006.
- Li-Xia Dai and Yong-Gao Chen, A note on perfect totient numbers, Journal of Northeast Normal University, Vol. 39, No. 4 (2007), pp. 17-19.
- Tuukka Hyvärinen, Täydelliset totienttiluvut (in Finnish), Master's thesis, Tampere University, 2015; alternative link.
- Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, On Perfect Totient Numbers, Journal of Integer Sequences, Vol. 6 (2003), Article 03.4.5.
- Paul Loomis, Michael Plytage and John Polhill, Summing up the Euler phi function, The College Mathematics Journal, Vol. 39, No. 1, Jan. 2008.
- Florian Luca, On the Distribution of Perfect Totients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.4.
- A. L. Mohan and D. Suryanarayana, Perfect totient numbers, in: K. Alladi (ed.), Number Theory, Proceedings of the Third Matscience Conference Held at Mysore, India, June 3-6, 1981, Lecture Notes in Mathematics, Vol 938, Springer, Berlin, Heidelber, 1982, pp. 101-105.
- Deng Moujie, A Note On Perfect Totient Numbers, Journal of Integer Sequences, Vol. 12 (2009), Article 09.6.2.
- Igor E. Shparlinski, On the sum of iterations of the Euler function, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.6.
- Hans Sieburg and Michael Kentgens, On Phi-perfect numbers, in: J. Akiyama et al. (eds.), Number Theory and Combinatorics, Japan 1984, World Scientific, 1985, pp. 245-254.
- M. V. Subbarao, On a Function connected with phi(n), The Mathematics Student, Vol. 23 (1955), pp. 178-179; entire volume.
- T. Venkataraman, Perfect totient number, The Mathematics Student, Vol. 43, No. 2 (1975), p. 178; entire issue.
- Wikipedia, Perfect totient number.
Programs
-
Maple
with(numtheory): A082897_list := proc(N) local k,p,n,L; L := NULL; for n from 3 by 2 to N do k := 0; p := phi(n); while 1 < p do k := k + p; p := phi(p) od; if k + 1 = n then L := L,n fi od; L end: # Peter Luschny, Nov 01 2010
-
Mathematica
kMax = 57395631; a = Table[0, {kMax}]; PTNs = {}; Do[e = EulerPhi[k]; a[[k]] = e + a[[e]]; If[k == a[[k]], AppendTo[PTNs, k]], {k, 2, kMax}]; PTNs perfTotQ[n_] := Plus @@ FixedPointList[ EulerPhi@ # &, n] == 2n + 1; Select[Range[1000], perfTotQ] (* Robert G. Wilson v, Nov 06 2010 *)
-
PARI
S(n)={n=eulerphi(n);if(n==1,1,n+S(n))} for(n=2,1e3,if(S(n)==n,print1(n", "))) \\ Charles R Greathouse IV, Mar 29 2012; Corrected by Dana Jacobsen, Dec 16 2018
-
Perl
use ntheory "euler_phi"; sub S { my $n=euler_phi(shift); return 1 if $n == 1; $n+S($n); } for (2..1e4) { say if $==S($); } # Dana Jacobsen, Dec 16 2018
-
Python
from itertools import count, islice from gmpy2 import digits from sympy import totient def A082897_gen(startvalue=3): # generator of terms >= startvalue for n in count((k:=max(startvalue,3))+1-(k&1),2): t = digits(n,3) if t.count('0') == len(t)-1: yield n else: m, s = n, 1 while (m:=totient(m))>1: s += m if s == n: yield n A082897_list = list(islice(A082897_gen(),20)) # Chai Wah Wu, Mar 24 2023
Formula
n is a perfect totient number if S(n) = n, where S(n) = phi(n) + phi^2(n) + ... + 1, where phi is Euler's totient function and phi^2(n) = phi(phi(n)), ..., phi^k(n) = phi(phi^(k-1)(n)).
n such that n = A092693(n).
n such that 2n = A053478(n). - Vladeta Jovovic, Jul 02 2004
n log log log log n << a(n) <= 3^n. - Charles R Greathouse IV, Mar 22 2012
Extensions
Corrected by T. D. Noe, Mar 11 2004
Comments