cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035929 Number of Dyck n-paths starting U^mD^m (an m-pyramid), followed by a pyramid-free Dyck path.

Original entry on oeis.org

0, 1, 1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918, 27770, 98424, 351983, 1268541, 4602752, 16799894, 61642078, 227239086, 841230292, 3126039364, 11656497518, 43601626146, 163561902392, 615183356156, 2319423532024, 8764535189296, 33187922345210, 125912855167740
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is -A128834. - Paul Barry, Jul 04 2009

Examples

			The a(5) = 6 cases are UUUUUDDDDD, UDUUUDUDDD, UDUUUDDUDD, UDUUDUUDDDD, UDUUDUDUDUDD and UUDDUUDUDD.
		

Crossrefs

Cf. A082989.

Programs

  • Magma
    /* Expansion */ Q:=Rationals(); R:=PowerSeriesRing(Q,30); R!(2*x/(1+x+(1-x)*Sqrt(1-4*x))); // G. C. Greubel, Jan 15 2018
  • Maple
    A:= proc(n) option remember; if n=0 then 0 else convert (series ((A(n-1)^2 *(x^2-2*x+2) +x)/ (x+1), x,n+1), polynom) fi end: a:= n-> coeff (A(n), x,n): seq (a(n), n=0..25); # Alois P. Heinz, Aug 23 2008
  • Mathematica
    CoefficientList[Series[2*x/(1+x+(1-x)*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(2*x/(1+x+(1-x)*sqrt(1-4*x)))) \\ G. C. Greubel, Jan 15 2018
    

Formula

G.f.: A(x) satisfies A^2*(x^2-2*x+2) - A*(x+1) + x = 0.
The generating function can be written as x/(1-x) times that of A082989.
G.f.: (2*x)/(1+x+(1-x)*sqrt(1-4*x)) = 1/(1-x(1-x)/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, Jul 04 2009
From Gary W. Adamson, Jul 14 2011: (Start)
a(n), n>0; is the upper left term in M^(n-1), where M is the infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 2*n*a(n) +4*(-3*n+4)*a(n-1) +(19*n-44)*a(n-2) + (-13*n + 36)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ 3 * 4^n / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
From Alexander Burstein, Aug 05 2017: (Start)
G.f: A = x/(1-(1-x)*x*C) = x*C/(1+x^2*C^2) = x*C^3/(1+2*x*C^3), where C is the g.f. of A000108.
A/x composed with x*C = g.f. of A165543, where A and C are as above. (End)

Extensions

Edited by Louis Shapiro, Feb 16 2005
Wrong g.f. removed by Vaclav Kotesovec, Feb 12 2014

A094322 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k pyramids.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 4, 3, 3, 3, 1, 13, 11, 7, 6, 4, 1, 42, 37, 23, 14, 10, 5, 1, 139, 122, 78, 43, 25, 15, 6, 1, 470, 408, 262, 145, 75, 41, 21, 7, 1, 1616, 1390, 887, 494, 251, 124, 63, 28, 8, 1, 5632, 4810, 3048, 1694, 864, 414, 196, 92, 36, 9, 1, 19852, 16857, 10622
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2004

Keywords

Comments

A pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis. Here U=(1,1) and D(1,-1). This definition differs from the one in A091866. Column k=0 is A082989. Row sums are the Catalan numbers (A000108).

Examples

			T(3,2)=2 because there are two Dyck paths of semilength 3 having 2 pyramids: (UD)(UUDD) and (UUDD)(UD) (pyramids shown between parentheses).
Triangle begins:
[1];
[0, 1];
[0, 1, 1];
[1, 1, 2, 1];
[4, 3, 3, 3, 1];
[13, 11, 7, 6, 4, 1];
[42, 37, 23, 14, 10, 5, 1];
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(1-z)/(1-z*C+z^2*C-t*z): Gserz:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(Gserz,z^n)) od: seq([subs(t=0,P[n]),seq(coeff(P[n],t^k),k=1..n)],n=0..14);
    # second Maple program:
    b:= proc(x, y, u, t) option remember; expand(`if`(y<0 or y>x, 0,
          `if`(x=0, `if`(t, z, 1), (b(x-1, y-1, false, t)+
          b(x-1, y+1, true, t and u or y=0))*`if`(t and y=0, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p,z,i), i=0..n))(b(2*n, 0, false$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jul 22 2015
  • Mathematica
    b[x_, y_, u_, t_] := b[x, y, u, t] = Expand[If[y<0 || y>x, 0, If[x==0, If[ t, z, 1], (b[x-1, y-1, False, t] + b[x-1, y+1, True, t && u || y == 0]) * If[t && y==0, z, 1]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][b[2*n, 0, False, False]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 29 2016, after Alois P. Heinz *)

Formula

G.f.: G=G(t,z) = (1-z)/(1-zC+z^2*C -tz), where C = [1-sqrt(1-4z)]/(2z) is the Catalan function.

A094449 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having sum of pyramid heights equal to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 2, 0, 0, 8, 13, 8, 5, 0, 0, 16, 42, 26, 20, 12, 0, 0, 32, 139, 85, 65, 48, 28, 0, 0, 64, 470, 286, 214, 156, 112, 64, 0, 0, 128, 1616, 982, 727, 517, 364, 256, 144, 0, 0, 256, 5632, 3420, 2518, 1772, 1214, 832, 576, 320, 0, 0, 512, 19852
Offset: 0

Views

Author

Emeric Deutsch, Jun 04 2004

Keywords

Comments

A pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis. Here U=(1,1) and D=(1,-1). This definition differs from the one in A091866. Column k=0 is A082989. Row sums are the Catalan numbers (A000108).

Examples

			T(3,3)=4 because there are four Dyck paths of semilength 3 having 3 as sum of pyramid heights: (UD)(UUDD),(UUDD)(UD),(UD)(UD)(UD) and (UUUDDD) (the pyramids are shown between parentheses).
Triangle begins:
  [1];
  [0, 1];
  [0, 0, 2];
  [1, 0, 0, 4];
  [4, 2, 0, 0, 8];
  [13, 8, 5, 0, 0, 16];
  [42, 26, 20, 12, 0, 0, 32];
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(1-t*z)*(1-z)/(1-2*t*z+t*z^2-z*C*(1-z)*(1-t*z)): Gserz:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(Gserz,z^n)) od: seq([subs(t=0,P[n]),seq(coeff(P[n],t^k),k=1..n)],n=0..14);

Formula

G.f.: G(t, z) = (1-t*z)*(1-z)/(1-2*t*z+t*z^2-z*(1-z)*(1-t*z)*C), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
Showing 1-3 of 3 results.