A083093 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 3.
1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 2, 2, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1
Offset: 0
Examples
. Rows 0 .. 3^3: . 0: 1 . 1: 1 1 . 2: 1 2 1 . 3: 1 0 0 1 . 4: 1 1 0 1 1 . 5: 1 2 1 1 2 1 . 6: 1 0 0 2 0 0 1 . 7: 1 1 0 2 2 0 1 1 . 8: 1 2 1 2 1 2 1 2 1 . 9: 1 0 0 0 0 0 0 0 0 1 . 10: 1 1 0 0 0 0 0 0 0 1 1 . 11: 1 2 1 0 0 0 0 0 0 1 2 1 . 12: 1 0 0 1 0 0 0 0 0 1 0 0 1 . 13: 1 1 0 1 1 0 0 0 0 1 1 0 1 1 . 14: 1 2 1 1 2 1 0 0 0 1 2 1 1 2 1 . 15: 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1 . 16: 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1 . 17: 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 . 18: 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 . 19: 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 1 . 20: 1 2 1 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 1 2 1 . 21: 1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 1 . 22: 1 1 0 1 1 0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1 . 23: 1 2 1 1 2 1 0 0 0 2 1 2 2 1 2 0 0 0 1 2 1 1 2 1 . 24: 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 . 25: 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 . 26: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 . 27: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . - _Reinhard Zumkeller_, Jul 11 2013
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Disc. Appl. Math. 66 (1996) 1-22.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- Lin Jiu and Christophe Vignat, On Binomial Identities in Arbitrary Bases, arXiv:1602.04149 [math.CO], 2016.
- Y. Moshe, The density of 0's in recurrence double sequences, J. Number Theory, 103 (2003), 109-121.
- Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Cf. A007318, A051638 (row sums), A090044, A047999, A034931, A034930, A008975, A034932, A062296, A006047.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), (this sequence) (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Haskell
a083093 n k = a083093_tabl !! n !! k a083093_row n = a083093_tabl !! n a083093_tabl = iterate (\ws -> zipWith (\u v -> mod (u + v) 3) ([0] ++ ws) (ws ++ [0])) [1] -- Reinhard Zumkeller, Jul 11 2013
-
Magma
/* As triangle: */ [[Binomial(n,k) mod 3: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
-
Maple
A083093 := proc(n,k) modp(binomial(n,k),3) ; end proc: seq(seq(A083093(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jul 26 2017
-
Mathematica
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 3] (* Robert G. Wilson v, Jan 19 2004 *)
-
Python
from sympy import binomial def T(n, k): return binomial(n, k) % 3 for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 26 2017
-
Python
from math import comb, isqrt def A083093(n): def f(m,k): if m<3 and k<3: return comb(m,k)%3 c,a = divmod(m,3) d,b = divmod(k,3) return f(c,d)*f(a,b)%3 return f(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Apr 30 2025
Formula
T(i, j) = binomial(i, j) mod 3.
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 3. - Reinhard Zumkeller, Jul 11 2013
T(n,k) = Product_{i>=0} binomial(n_i,k_i) mod 3, where n = Sum_{i>=0} n_i*3^i and k = Sum_{i>=0} k_i*3^i, 0<=n_i, k_i <=2 [Allouche et al.]. - R. J. Mathar, Jul 26 2017
Comments