A083099 a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040
Offset: 0
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Project Euler, Problem 752, sequence beta(n).
- Index entries for linear recurrences with constant coefficients, signature (2,6).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
Maple
A083099 := proc(n) option remember; if n <= 1 then n; else 2*procname(n-1)+6*procname(n-2) ; end if; end proc: # R. J. Mathar, Sep 23 2016
-
Mathematica
CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *) Expand[Table[((1 + Sqrt[7])^n - (1 - Sqrt[7])^n)7/(14Sqrt[7]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *) LinearRecurrence[{2,6}, {0,1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
-
PARI
a(n)=([0,1; 6,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
-
Sage
[lucas_number1(n,2,-6) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
-
SageMath
A083099=BinaryRecurrenceSequence(2,6,0,1) [A083099(n) for n in range(41)] # G. C. Greubel, Jun 01 2023
Formula
G.f.: x/(1 - 2*x - 6*x^2).
From Paul Barry, Sep 29 2004: (Start)
E.g.f.: (d/dx)(exp(x)*sinh(sqrt(7)*x)/sqrt(7));
a(n-1) = Sum_{k=0..n} binomial(n, 2k+1)*7^k. (End)
Simplified formula: a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(28). - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(2n) = 2^n * A154245(n), a(2n+1) = 2^n * (5*A154245(n) - 9*A154245(n-1)). - Ralf Stephan, Dec 24 2013
a(n) = Sum_{k=1,3,5,...<=n} binomial(n,k)*7^((k-1)/2). - Vladimir Shevelev, Feb 06 2014
a(n) = i^(n-1)*6^((n-1)/2)*ChebyshevU(n-1, -i/sqrt(6)). - G. C. Greubel, Jun 01 2023
Comments