cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A109790 Numbers k such that A083186(k) is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 19, 33, 47, 49, 51, 55, 63, 73, 97, 105, 117, 119, 131, 165, 189, 195, 223, 229, 243, 245, 253, 257, 263, 273, 277, 291, 295, 297, 329, 331, 357, 367, 371, 389, 391, 395, 397, 399, 445, 487, 497, 551, 577, 603, 605, 637, 641, 643, 683, 685
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2007

Keywords

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Jun 23 2007

A263559 a(n) = A083186(n) mod A007504(n).

Original entry on oeis.org

1, 3, 9, 2, 11, 26, 51, 3, 17, 39, 73, 119, 175, 237, 307, 8, 49, 88, 151, 220, 295, 380, 479, 584, 705, 848, 999, 1158, 1321, 1486, 1687, 51, 139, 241, 355, 477, 611, 763, 919, 1085, 1253, 1435, 1633, 1839, 2055, 2277, 2519, 2813, 3111, 3413, 3719, 4023, 4341, 4683, 5019
Offset: 1

Views

Author

Altug Alkan, Oct 21 2015

Keywords

Comments

Sequence is interesting because of its graph. a(n)-a(n-1) < 0 at some points such as n=4 and n=8, although usually a(n)-a(n-1) > 0.

Examples

			a(1) = 1 because prime(prime(1)) mod prime(1) = 3 mod 2 = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Sum[Prime@ Prime@ k, {k, n}], Sum[Prime@ k, {k, n}]], {n, 55}] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    vector(100, n, sum(k=1, n, prime(prime(k))) % sum(k=1, n, prime(k)))

A086749 Partial sums of A038580.

Original entry on oeis.org

5, 16, 47, 106, 233, 412, 689, 1020, 1451, 2050, 2759, 3678, 4741, 5894, 7191, 8714, 10501, 12348, 14569, 16950, 19427, 22176, 25177, 28436, 32073, 36016, 40107, 44380, 48777, 53326, 58707, 64330, 70199, 76312, 82973, 89796, 96989, 104596
Offset: 1

Views

Author

Cino Hilliard, Jul 30 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Nest[Prime,Range[45],3]] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    f(n) = y=0; for(x=1,n,y+=prime(prime(prime(x))); print1(y","))

Extensions

Edited by N. J. A. Sloane, Apr 17 2007

A304251 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^k_j).

Original entry on oeis.org

0, 3, 5, 9, 11, 8, 17, 27, 25, 14, 31, 14, 41, 20, 16, 81, 59, 28, 67, 20, 22, 34, 83, 32, 121, 44, 125, 26, 109, 19, 127, 243, 36, 62, 28, 34, 157, 70, 46, 38, 179, 25, 191, 40, 36, 86, 211, 86, 289, 124, 64, 50, 241, 128, 42, 44, 72, 112, 277, 25, 283, 130, 42, 729, 52, 39, 331, 68, 88, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2018

Keywords

Examples

			a(12) = 14 because 12 = 2^2*3 and prime(2)^2 + prime(3) = 3^2 + 5 = 14.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
       add(ithprime(t[1])^t[2],t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 25 2024
  • Mathematica
    a[n_] := Plus @@ (Prime[#[[1]]]^#[[2]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 70}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,1])^f[k,2]); \\ Michel Marcus, May 09 2018

Formula

a(prime(i)^k) = prime(prime(i))^k.
a(A000040(k)) = A006450(k).
a(A006450(k)) = A038580(k).
a(A002110(k)) = A083186(k).

A126144 Primes in A109790.

Original entry on oeis.org

3, 5, 7, 19, 47, 73, 97, 131, 223, 229, 257, 263, 277, 331, 367, 389, 397, 487, 577, 641, 643, 683, 701, 739, 743, 757, 797, 857, 877, 1031, 1291, 1297, 1423, 1451, 1543, 1579, 1637, 1697, 1723, 1823, 1949, 2039, 2081, 2381, 2477, 2539, 2617, 2659, 2689, 2749
Offset: 1

Views

Author

J. M. Bergot, Jun 11 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[3000], PrimeQ[Sum[Prime[Prime[i]],{i,1,#}]]&],PrimeQ[ # ] &] (* Stefan Steinerberger, Jun 23 2007 *)

Extensions

More terms from Stefan Steinerberger, Jun 23 2007

A263541 Numbers k such that k divides the sum of the first k primes with prime indices.

Original entry on oeis.org

1, 2, 4, 6, 40, 43, 705, 789, 1148, 2140, 4276, 5512, 6672, 8754, 38434, 174501, 493578, 598249, 628064, 702774, 1368196, 4584004, 13813057, 36425906, 87964443, 447997476, 1964288296
Offset: 1

Views

Author

Altug Alkan, Oct 20 2015

Keywords

Comments

There are 8 values of a(n) < 1000 although A045345 has 4 values A045345(n) < 1000. How do these sequences compare asymptotically?
Heuristics suggest that the ratio of the number of terms in each sequence up to x should approach 1 as x increases without bound. In the Cramér model, log a(n) and log A045345(n) are Erlang-distributed with shape n and rate 1. - Charles R Greathouse IV, Oct 20 2015

Examples

			1 is in the sequence because prime(prime(1)) = 3 is divisible by 1.
2 is in the sequence because prime(prime(1)) + prime(prime(2)) = 3 + 5 = 8 is divisible by 2.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List(),k,s,t); forprime(p=2,, if(isprime(t++), s+=p; k++; if(s%k==0, listput(v, k)); if(k>=lim, return(Vec(v))))) \\ Charles R Greathouse IV, Oct 20 2015

Extensions

a(12)-a(26) from Charles R Greathouse IV, Oct 20 2015
a(27) from Charles R Greathouse IV, Oct 21 2015
Showing 1-6 of 6 results.