cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A083206 a(n) is the number of ways of partitioning the divisors of n into two disjoint sets with equal sum.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 14, 0, 0, 0, 1, 0, 13, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 2, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

a(n)=0 for deficient numbers n (A005100), but the converse is not true, as 18 is abundant (A005101) and a(18)=0, see A083211;
a(n)=1 for perfect numbers n (A000396), see A083209 for all numbers with a(n)=1;
records: A083213(k)=a(A083212(k)).
In order that a(n)>0, the sum of divisors of n must be even by definition: a(n) = half the number of partitions of A000203(n)/2 into divisors of n, see formula. [Reinhard Zumkeller, Jul 10 2010]

Examples

			a(24)=3: 1+2+3+4+8+12=6+24, 1+3+6+8+12=2+4+24, 4+6+8+12=1+2+3+24.
		

Crossrefs

Cf. A083208 [= a(A083207(n))], A083211, A000005, A000203, A082729, A378446 (inverse Möbius transform), A378449.
Cf. A083207 (positions of terms > 0), A083210 (positions of 0's), A083209 (positions of 1's), A378652 (of 2's).

Programs

  • Mathematica
    a[n_] := (s = DivisorSigma[1, n]; If[Mod[s, 2] == 1, 0, f[n, s/2, 2]]); f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k+1] + f[n, m-k, k+1]*Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[a, 105] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)
  • PARI
    A083206(n) = { my(s=sigma(n),p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); }; \\ Antti Karttunen, Dec 02 2024, after Ilya Gutkovskiy

Formula

a(n) = if sigma(n) mod 2 = 1 then 0 else f(n,sigma(n)/2,2), where sigma=A000203 and f(n,m,k) = if k<=m then f(n,m,k+1)+f(n,m-k,k+1)*0^(n mod k) else 0^m, cf. A033630, also using f. [Reinhard Zumkeller, Jul 10 2010]
a(n) is half the coefficient of x^0 in Product_{d|n} (x^d + 1/x^d). - Ilya Gutkovskiy, Feb 04 2024

A083213 Record values in A083206.

Original entry on oeis.org

0, 1, 3, 5, 17, 140, 375, 1090, 11753, 373581, 1278347, 13637279, 163618153, 27924949575, 57188675627613, 610029725544935, 117122198574078151, 19988890974450988558, 239866235837773427391, 12281151167363439030630, 714539773759750811945040, 6986623779812404246388298, 1609715048049410062316011928, 5993993484832111940013400809611
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

A083206(k)A083212(n).

Crossrefs

Formula

a(n) = A083206(A083212(n)).

Extensions

Extended by T. D. Noe, Jul 09 2010
More terms from Antti Karttunen, Dec 04 2024

A335144 Nonunitary Zumkeller numbers (A335142) whose set of nonunitary divisors can be partitioned into two disjoint sets of equal sum in a record number of ways.

Original entry on oeis.org

24, 96, 180, 216, 240, 360, 480, 720, 1080, 1440, 2160, 2880, 4320, 5040, 7560, 10080, 15120, 20160, 25200, 30240, 45360, 50400, 60480, 75600, 100800, 110880, 151200, 221760, 277200, 302400, 332640, 453600, 498960, 554400, 665280, 831600, 1108800, 1330560
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

The corresponding record values are 1, 3, 7, 13, 17, 102, 140, ... (see the link for more values).

Examples

			24 is the first term since it is the least nonunitary Zumkeller number, and its nonunitary divisors, {2, 4, 6, 12}, can be partitioned in a single way: 2 + 4 + 6 = 12. The next nonunitary Zumkeller number with more than one partition is 96, whose nonunitary divisors, {2, 4, 6, 8, 12, 16, 24, 48}, can be partitioned in 3 ways: 2 + 4 + 6 + 8 + 16 + 24 = 12 + 48, 2 + 6 + 12 + 16 + 24 = 4 + 8 + 48, and 8 + 12 + 16 + 24 = 2 + 4 + 6 + 48.
		

Crossrefs

The nonunitary version of A083212.
Subsequence of A335142.
Cf. A335143.

Programs

  • Mathematica
    nuz[n_] := Module[{d = Select[Divisors[n], GCD[#, n/#] > 1 &], sum, x}, sum = Plus @@ d; If[sum < 1 || OddQ[sum], 0, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]]/2]]; nuzm = 0; s = {}; Do[nuz1 = nuz[n]; If[nuz1 > nuzm, nuzm = nuz1; AppendTo[s, n]], {n, 1, 8000}]; s

A335220 Exponential Zumkeller numbers (A335218) whose set of exponential divisors can be partitioned into two disjoint sets of equal sum in a record number of ways.

Original entry on oeis.org

36, 900, 3600, 22500, 44100, 176400, 705600, 1587600, 4410000, 5336100, 21344400
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Comments

The corresponding record values are 1, 3, 4, 6, 83, 2920, 81080, 254566, 344022, 487267, 4580715031, ...

Examples

			36 is the first term since it is the least exponential Zumkeller number, and its exponential divisors, {6, 12, 18, 36}, can be partitioned in a single way: 6 + 12 + 18 = 36. The next exponential Zumkeller number with more than one partition is 900, whose nonunitary divisors, {30, 60, 90, 150, 180, 300, 450, 900}, can be partitioned in 3 ways: 30 + 60 + 90 + 150 + 300 + 450 = 180 + 900, 60 + 90 + 180 + 300 + 450 = 30 + 150 + 900, and 150 + 180 + 300 + 450 = 30 + 60 + 90 + 900.
		

Crossrefs

The exponential version of A083212.
Subsequence of A335218.
Cf. A335219.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; nways[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], 0, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]]/2]]; nwaysm = 0; s = {}; Do[nways1 = nways[n]; If[nways1 > nwaysm, nwaysm = nways1; AppendTo[s, n]], {n, 1, 23000}]; s

A348714 Numbers whose divisors can be partitioned into two disjoint sets with equal arithmetic mean in a record number of ways.

Original entry on oeis.org

1, 6, 24, 30, 60, 120, 168, 180, 240, 360, 420, 720, 840, 1260
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2021

Keywords

Comments

The corresponding record values are 0, 1, 2, 3, 19, 72, 99, 136, 248, 3094, 10452, 78057, 1323260, 4686578, ...

Examples

			6 is the smallest number whose set of divisors can be partitioned into two disjoint sets with equal arithmetic mean: {3} and {1, 2, 6}.
24 is the smallest number whose set of divisors can be partitioned into two disjoint sets with equal arithmetic mean in two ways: ({3, 12}, {1, 2, 4, 6, 8, 24}) and ({1, 2, 3, 24}, {4, 6, 8, 12}).
		

Crossrefs

Programs

  • Mathematica
    c[n_] := Count[Subsets[(d = Divisors[n])], _?(Mean[#] == Mean[Complement[d, #]] &)]/2; cm = -1; s = {}; Do[If[(c1 = c[n]) > cm, cm = c1; AppendTo[s, n]], {n, 1, 250}]; s
Showing 1-5 of 5 results.