A083361
Subsequence of sequence A083359 in which every prime factor can be found in the number at least as often as it is factor of the number.
Original entry on oeis.org
21372, 119911, 229912, 2971137, 13731373, 31373137, 183171409, 221397372, 241153517, 254724772, 271141332, 331191135, 1153115117, 1190911909, 1453312395, 2511176437, 2923699119, 2971193115, 3124516195, 3211433715
Offset: 1
221397372 = 2*2*3*3*7*397*2213.
A083360
Subsequence of sequence A083359 in which factors do not overlap in the number.
Original entry on oeis.org
735, 3792, 13377, 290912, 537975, 1341275, 2333772, 7747292, 13115375, 19853575, 22940075, 29090912, 29373375, 52979375, 71624133, 79241575, 311997175, 319953792, 533334375, 1019127375, 1147983375, 1734009275
Offset: 1
71624133 = 7*7*162413*3*3.
A324261
Subsequence of A083359 (Visual Factor Numbers) of the form (10^m+1)*p, where the decimal representation of prime p contains all the prime factors of 10^m+1.
Original entry on oeis.org
13731373, 31373137, 1190911909, 9091190911, 19090911909091, 7316763215964848081373167632159648480813, 111272689909091345969111272689909091345969, 111279090913268945969111279090913268945969, 112726894596919090913112726894596919090913
Offset: 1
With m = 4: 10^4 + 1 = 10001 = 73 * 137. We can form prime p = 1373 which concatenates with itself to give a(1) = 13731373 = 73 * 137 * 1373. We can also form the prime p = 3137 which gives a(2). The number 7313 also contains all the prime factors of 10001 but it is not prime.
With m = 33: 10^33 + 1 = 7*11*11*13*23*4093*8779*599144041*183411838171, there are 4932 m-digit numbers that contain all the factors, of which 227 of them are prime. Each of these primes generates a term in the sequence with 66 digits, the smallest of which is 112359914404134093877918341183817112359914404134093877918341183817. This is A324262(33).
A324257
Conceited Numbers: Composite numbers that are a concatenation of their distinct prime factors with multiplicity in some order allowing overlap.
Original entry on oeis.org
735, 3792, 13377, 21372, 51375, 67335, 119911, 229912, 290912, 537975, 1341275, 1713192, 2317312, 2333772, 2971137, 3719193, 4773132, 5117695, 7237755, 7747292, 11973192, 13115375, 13731373, 16749933, 19853575, 22940075, 29090912, 29373375
Offset: 1
67335 = 3*5*67^2 formed by 67||3|||3||5 (this term is not in A083359 because two 3's are required in the concatenation).
3719193 = 3*19*71*919 formed by 3||71||9(19)||3 where 19 and 919 overlap.
A121342
Composite numbers that are a concatenation of their distinct prime divisors in some order.
Original entry on oeis.org
735, 3792, 1341275, 13115375, 22940075, 29373375, 71624133, 311997175, 319953792, 1019127375, 1147983375, 1734009275, 5581625072, 7350032375, 17370159615, 33061224492, 103375535837, 171167303912, 319383665913, 533671737975, 2118067737975, 3111368374257
Offset: 1
For example: 735 = 3*5*7^2 and 3792 = 2^4*3*79.
-
fQ[n_] := !PrimeQ@n && MemberQ[ FromDigits /@ (Flatten@# & /@ IntegerDigits[ Permutations[ First /@ FactorInteger@n]]), n]; Do[ If[fQ@n, Print@n], {n, 10^7/4}] (* Robert G. Wilson v, Sep 02 2006 *)
-
isok(n) = {if (isprime(n), return (0)); my(vp = factor(n)[,1], nb = #vp); for (i=0, nb!-1, my(vperm = numtoperm(nb, i), s = ""); for (i=1, #vperm, s = concat(s, vp[vperm[i]]);); if (eval(s) == n, return (1));); return (0);} \\ Michel Marcus, Feb 19 2019
Missing term 5581625072=5581||62507||2 inserted by
Deron Stewart, Feb 15 2019
A324260
Subsequence of A324257 (Conceited Numbers) where the distinct prime factors are concatenated without multiplicity.
Original entry on oeis.org
735, 3792, 1341275, 1713192, 2971137, 4773132, 13115375, 13731373, 22940075, 29373375, 31373137, 71624133, 121719472, 183171409, 221397372, 241153517, 311997175, 319953792, 331191135, 1019127375, 1147983375, 1190911909, 1453312395
Offset: 1
4773132 = 2^2 * 3^2 * 7 * 13 * 31 * 47 formed by 47||7||[3(1][3)]||2. The 6 distinct prime factors are used once each, with 3, 13 and 31 overlapping.
A324259
Subsequence of A324257 (Conceited Numbers) where every prime factor is visible in the number, not just each distinct prime factor.
Original entry on oeis.org
21372, 119911, 229912, 2971137, 3719193, 13731373, 16749933, 31373137, 183171409, 221397372, 238903323, 241153517, 254724772, 271141332, 331191135, 1153115117, 1190911909, 1453312395, 2511176437, 2923699119, 2971193115, 3124516195
Offset: 1
119911 = 11^2 * 991, formed by 11||(99(1)1), with 11 appearing twice in the number as required. (991 and 11 overlap.)
A324262
a(n) is the smallest term of A324261 with 2n digits if it exists, otherwise 0.
Original entry on oeis.org
0, 0, 0, 0, 13731373, 1190911909, 0, 19090911909091, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7316763215964848081373167632159648480813, 111272689909091345969111272689909091345969, 10527889691056689261011052788969105668926101, 0, 0, 0, 0
Offset: 0
With m = 27 there are three prime p's: 114175966169705419295257913, 352579141759661697054192911 and 525791141759661697054192913. The smallest p concatenated with itself gives a(27) = 114175966169705419295257913114175966169705419295257913.
With m = 28 there are no solutions so a(28) = 0.
A096595
Numbers n with the property that n is an anagram of the digits of the distinct prime factors of n.
Original entry on oeis.org
735, 3792, 7236, 17482, 19075, 19276, 32104, 42175, 104392, 107329, 123678, 145273, 149782, 174082, 174298, 174982, 237951, 297463, 319675, 457192, 459728, 639175, 840175, 1093672, 1236874, 1259473, 1268374, 1283746, 1286374, 1374682
Offset: 1
Example: 104392, whose prime factors are 2*2*2*13049. The digits 2, 1, 3, 0, 4 and 9 appear exactly once within 104392.
A319022
a(n) is the smallest number with n distinct prime factors whose decimal representation contains all its prime factors, taking multiplicity into account.
Original entry on oeis.org
2, 119911, 2510, 21372, 1943795, 73171842, 113678565, 13121675970, 297115923720, 73605381139290, 255360234137190, 43759729761726090
Offset: 1
a(2) = 119911 = 11 * 11 * 991.
a(3) = 2510 = 2 * 5 * 251.
a(4) = 21372 = 2 * 2 * 3 * 13 * 137.
a(5) = 1943795 = 5 * 7 * 19 * 37 * 79.
a(6) = 73171842 = 2 * 3 * 17 * 31 * 73 * 317.
a(7) = 113678565 = 3 * 5 * 7 * 11 * 13 * 67 * 113.
Showing 1-10 of 10 results.
Comments