A083359
Visible Factor Numbers, or VFNs: numbers n with the property that every prime factor of n can be found in the decimal expansion of n and every digit of n can be found in a prime factor.
Original entry on oeis.org
735, 3792, 13377, 21372, 51375, 119911, 229912, 290912, 537975, 1341275, 1713192, 2333772, 2971137, 4773132, 7747292, 13115375, 13731373, 19853575, 22940075, 29090912, 29373375, 31373137, 35322592, 52979375, 71624133, 79241575
Offset: 1
- Lindon, Visible factor numbers, J. Rec. Math., 1 (1968), 217.
A083361
Subsequence of sequence A083359 in which every prime factor can be found in the number at least as often as it is factor of the number.
Original entry on oeis.org
21372, 119911, 229912, 2971137, 13731373, 31373137, 183171409, 221397372, 241153517, 254724772, 271141332, 331191135, 1153115117, 1190911909, 1453312395, 2511176437, 2923699119, 2971193115, 3124516195, 3211433715
Offset: 1
221397372 = 2*2*3*3*7*397*2213.
A324257
Conceited Numbers: Composite numbers that are a concatenation of their distinct prime factors with multiplicity in some order allowing overlap.
Original entry on oeis.org
735, 3792, 13377, 21372, 51375, 67335, 119911, 229912, 290912, 537975, 1341275, 1713192, 2317312, 2333772, 2971137, 3719193, 4773132, 5117695, 7237755, 7747292, 11973192, 13115375, 13731373, 16749933, 19853575, 22940075, 29090912, 29373375
Offset: 1
67335 = 3*5*67^2 formed by 67||3|||3||5 (this term is not in A083359 because two 3's are required in the concatenation).
3719193 = 3*19*71*919 formed by 3||71||9(19)||3 where 19 and 919 overlap.
A121342
Composite numbers that are a concatenation of their distinct prime divisors in some order.
Original entry on oeis.org
735, 3792, 1341275, 13115375, 22940075, 29373375, 71624133, 311997175, 319953792, 1019127375, 1147983375, 1734009275, 5581625072, 7350032375, 17370159615, 33061224492, 103375535837, 171167303912, 319383665913, 533671737975, 2118067737975, 3111368374257
Offset: 1
For example: 735 = 3*5*7^2 and 3792 = 2^4*3*79.
-
fQ[n_] := !PrimeQ@n && MemberQ[ FromDigits /@ (Flatten@# & /@ IntegerDigits[ Permutations[ First /@ FactorInteger@n]]), n]; Do[ If[fQ@n, Print@n], {n, 10^7/4}] (* Robert G. Wilson v, Sep 02 2006 *)
-
isok(n) = {if (isprime(n), return (0)); my(vp = factor(n)[,1], nb = #vp); for (i=0, nb!-1, my(vperm = numtoperm(nb, i), s = ""); for (i=1, #vperm, s = concat(s, vp[vperm[i]]);); if (eval(s) == n, return (1));); return (0);} \\ Michel Marcus, Feb 19 2019
Missing term 5581625072=5581||62507||2 inserted by
Deron Stewart, Feb 15 2019
A324258
Subsequence of A324257 (Conceited Numbers) where the prime factors are concatenated without overlap.
Original entry on oeis.org
735, 3792, 13377, 67335, 290912, 537975, 1341275, 2333772, 5117695, 7747292, 13115375, 19853575, 22940075, 29090912, 29373375, 37723392, 52979375, 71624133, 79241575, 311997175, 319953792, 367543575, 533334375, 1019127375, 1147983375, 1734009275
Offset: 1
5117695 = 5 * 11^2 * 769, formed by 5||11||769||5. The prime factor 5 is used twice.
A096595
Numbers n with the property that n is an anagram of the digits of the distinct prime factors of n.
Original entry on oeis.org
735, 3792, 7236, 17482, 19075, 19276, 32104, 42175, 104392, 107329, 123678, 145273, 149782, 174082, 174298, 174982, 237951, 297463, 319675, 457192, 459728, 639175, 840175, 1093672, 1236874, 1259473, 1268374, 1283746, 1286374, 1374682
Offset: 1
Example: 104392, whose prime factors are 2*2*2*13049. The digits 2, 1, 3, 0, 4 and 9 appear exactly once within 104392.
Showing 1-6 of 6 results.
Comments