A083593 Expansion of 1/((1-2*x)*(1-x^4)).
1, 2, 4, 8, 17, 34, 68, 136, 273, 546, 1092, 2184, 4369, 8738, 17476, 34952, 69905, 139810, 279620, 559240, 1118481, 2236962, 4473924, 8947848, 17895697, 35791394, 71582788, 143165576, 286331153, 572662306, 1145324612, 2290649224
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,1,-2).
Programs
-
Mathematica
U[p_,n_,m_,v_]:=Block[{t},t=Floor[(1+p-m+n-v)/p];Sum[Binomial[n-v-p*z,m-1],{z,0,t-1}]]; A[p_,n_,v_]:=Sum[U[p,n,k,v],{k,1,n}]; (* Here we let p = 4 to produce the above sequence, but this code can produce A000975, A033138, A195904, A117302 for p=2,3,6,7.*) Table[A[4,n,1], {n,1,20}] (* Ryohei Miyadera, Tomohide Hashiba, Yuta Nakagawa, Hiroshi Matsui, Jun 04 2006 *) CoefficientList[Series[1/((1-2x)(1-x^4)),{x,0,40}],x] (* Vincenzo Librandi, Apr 04 2012 *) a[n_] := FromDigits[Table[(Mod[j, 4]/4) // Round, {j, 1, n + 3}], 2] (* Andres Cicuttin, Mar 25 2016 *) a[n_] := a[n] = 2 a[n - 1] + 1 - Ceiling[Mod[n, 4]/4]; a[0] = 1; Table[a[n], {n, 0, 31}] (* Andres Cicuttin, Mar 27 2016 *) LinearRecurrence[{2,0,0,1,-2},{1,2,4,8,17},40] (* Harvey P. Dale, Apr 03 2018 *)
-
PARI
Vec(1/((1-2*x)*(1-x^4))+O(x^99)) \\ Charles R Greathouse IV, May 15 2013
-
PARI
a(n)=(16<
Charles R Greathouse IV, Mar 27 2016 -
Python
def A083593(n): return ((32<
Chai Wah Wu, Apr 25 2025
Formula
a(n) = 2*a(n-1) + a(n-4) - 2*a(n-5).
If n is a multiple of 4, then a(n) = 2*a(n-1) + 1, otherwise a(n) = 2*a(n-1). - Gerald McGarvey, Oct 14 2008
a(n) = floor((2^(n+5) + 1)/30). - Tani Akinari, Jul 09 2013
From Andres Cicuttin, Mar 29 2016: (Start)
a(n) = 2*a(n-1) + floor(((n-1) mod 4)/3), with a(0)=1.
a(n) = 2*a(n-1) + 1 - ceiling((n mod 4)/4), with a(0)=1. (End)
15*a(n) = 2^(n+4) - A133145(n). - R. J. Mathar, Feb 27 2019
E.g.f.: (3*cos(x) - 5*cosh(x) + 32*cosh(2*x) + 6*sin(x) - 10*sinh(x) + 32*sinh(2*x))/30. - Stefano Spezia, Apr 25 2025
Comments